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Modelamento por CVM do diagrama de fases do sistema Co-Cr-Al

(Cobalto-Cromo-Aluminio) ctibico de corpo centrado

1. Introdugao

1.1. Objetivos

A termodindmica do sistema Co—Cr—Al ctibico de corpo centrado foi modelada por meio do
CVM — método variacional de clusters, com base em dados experimentais tomados da literatura
(tie—lines, temperaturas criticas de ordenamento ¢ valores de atividade do aluminio). Como
resultado, foram obtidas se¢des isotermas do diagrama de fases terndrio, bem como os trés bindrios

do sistema, em condi¢des de interesse lccnoldgico.

1.2. Revisdo bibliogrdfica

Intermetdlicos ordenados basecados no supereticulado B2 (tipo FeAl) tém atraido o interesse
dos pesquisadores em engenharia ¢ ciéncia dos materiais devido a um clevado potencial para o
cmprego como materiais estruturais em aplicagdes de alta temperatura (como por exemplo, palhetas
de turbinas de avides a jato ou dec centrais termo—elétricas). Esses materiais aliam elevada
resisténcia mecdnica a altas temperaturas (~700°C), baixa densidade (~6g/cm?) e elevada resisténcia
a corrosdo (1).

O sistema Co—~Al apresenta uma fase estdvel tipo B2 nas composigdes vizinhas a 50%at de
Al com ponto de fusdo congruente de 1640°C a 50%at (2). Esse alto ponto de fusdo torna materiais
baseados nessa fase bons candidatos para aplicagSes estruturais. A adi¢do de cromo a essas ligas
apresenta alto potencial para o desenvolvimento desses materiais, pois ambos os sistemas bindrios,
Al-Cr e Co—Cr, apresentam amplas 4reas de estabilidade da fase ciibica de corpo centrado (CCC),
0 que permite supor que equilibrios envolvendo o supereticulado B2 serio observados em grandes
faixas de concentragio no sistema terndrio. O cromo também auxiliaria no incremento da
resisténcia a oxidagdo dessas ligas.

Recentemente, Ishikawa, Ise et al. (3) determinaram experimentalmente quatro segles
isotérmicas do sistema terndrio, nas regides de composi¢io de interesse para o presente trabalho.
Esses autores observaram que a fase B2 — (Co, Cr)AI apresenta—se em equilibrio com a solugio
solida CCC desordenada (A2) em uma ampla faixa de concentragdes. O equilibrio é de segunda

ordem para teores baixos de cromo e torna-se de primeira ordem a partir de um ponto tricritico,
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cuja composi¢do ¢ fungdo da temperatura. O domo de miscibilidade envolvendo as fases B2 ¢ A2
fecha—se com o aumento da temperatura, mas seu desaparecimento total ndo foi observado na faixa
de temperaturas estudada.

As transformagdes de ordem—desordem envolvendo o supereticulado B2 e a fase
desordenada A2 podem ser modelados pelo método variacional de clusters (Cluster Variation
Method, CVM), fornecendo um formalismo teérico para a descri¢do termodinidmica desses
sistemas. O procedimento a ser adotado no presente trabalho foi usado recentemente para o
modelamento do diagrama de fases Fe-Ti—Al (4) ¢ serd revisado mais adiante.

O objetivo do presente trabatho é modelar as transformagdes ordem~desordem envolvendo
os supereticulados baseados no reticulado CCC por meio do CVM, utilizando—se os dados

experimentais da ref. (3) para a determinagdo dos parimetros de interagdo necessdrios ao cdlculo.

1.3. Metodologia

A metodologia empregada no presente trabalho foi desenvolvida por C. G. Schdn em sua
tese de doutoramento na Universidade de Dortmund, Alemanha (5), ¢ foi empregada no
modelamento do sistema CCC Fe-Ti-Al (4). Nesse trabalho, informagGes sobre os equilibrios
envolvendo as fases A2, B2 e DO, (ordenada tipo Fe;Al) foram empregadas na determinagdo dos
parimetros de interagdo dos sistemas bindrios Fe—Al e Ti—-Fe CCC. Os pardmetros de interagdo do
sistema Ti—Al CCC foram obtidos por comparagdo das temperaturas criticas de ordenamento no
sistema ternério, na regido rica em ferro. Uma fundamentag@o teérica mais aprofundada e mais
abrangente sobre a ordenagdo atdmica € fornecida por Inden e Pitsch (9)

No caso do sistema Co—Cr—Al, um procedimento alternativo foi empregado, visto que ndo
hd equilibrios estdveis observados entre as fases A2, B2 e DO, nos bindrios Al-Cr, Co—Cr e Co—Al
Dados confidveis de atividade do aluminio nos sistemas bindrios Al1-Cr (6) e Co—Al (7), entretanto,
encontram—se disponiveis na literatura e podem ser usados na determinagio dos parimetros de
interagdio, conforme procedimento desenvolvido ¢ exemplificado em (5) pelo modelamento do
sistema Ti—Al-Cr CCC. Dados para o sistema Co—Cr foram obtidos por Havrankova et al. (8),
através de espectrometria de massa em célula de Knudsen; esses dados serdo utilizados para o
modelamento desse sistema.

O presente trabalho propds—se a combinar as informagdes termodindmicas disponiveis nos
sistemas bindrios ¢ os dados experimentais obtidos no sistema terndrio para a determinag¢do dos

parimetros de intera¢do para o modelamento do sistema Co—Cr—Al CCC por CVM.

Departamento de Engenharia Metaliirgica e de Materiais Trabalho de Formatura 2000
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1.4. Visao geral do presente trabalho

O objetivo principal desse trabalho de formatura, como o proprio titulo deixa claro, € o
modelamento do sistema Co—Cr—Al CCC utilizando o método variacional de clusters - CVM, a
partir de dados termodinamicos obtidos da literatura. Portanto, o autor desse trabalho de formatura
ndo realizou experimentos para a obteng@o de dados termodindmicos do sistema Co—Cr—Al. No
entanto, esses dados estdo totalmente baseados determinagfes experimentais obtidas na literatura.
Os dados utilizados para o ajuste dos parametros do CVM sido todos relativos aos trés sub—sistemas
bindrios. Isso significa que apenas pardmetros bindrios estdo sendo utilizados. Isso nos leva a outro
objetivo do presente trabalho: mostrar que com apenas os pardmetros dos sistemas bihérios, é
possivel fornecer uma boa descrigdo do sistema terndrio.

Nessa primeira etapa do trabalho, portanto, faremos uma descri¢do do método variacional de
clusters, seguida da sua aplicag@o para o sistema Co—Cr—Al CCC. Isso nos tomdra a maior parte do
trabalho. Entretanto, devido ao cardter fortementc computacional desse projeto, também
descrevemos alguns dos conceitos praticos relacionados ao uso do CVM para célculos em sistemas
bindrios e terndrios. Nessa segunda etapa, também descrevemos a utilizagdo do software GnuPlot
para a confec¢do de diagramas de fase terndrios, jJ4 que acreditamos que esse esforgo deve ser
registrado de alguma forma no presente trabalho. Relacionado a isso, € ainda abordada uma forma
de suavizagdo de curvas, que foi necessdria para a claboragio dos diagramas terndrios, que

mostravam uma certa dispersdo dos pontos.

Departamento de Engenharia Metaldrgica e de Materiais Trabalho de Formatura 2000



2. O CVM - Método variacional de clusters

2.1.Defini¢bes

O CVM foi proposto inicialmente como um formalismo geral para aproximar a entropia de
sistemas cristalinos [5]. O principio fundamental do método € definir um cluster bdsico, que inclua
todas as intera¢des entre dtomos que devem ser levadas em consideragdo no cdlculo. Uma descrigdo
pormenorizada dos aspectos termodindmicos relacionados a ordem configuracional estd além do

escopo do presente trabalho. O leitor pode encontrar tal descrigdo na referéncia [9]

Figura 2.1. Tetraedro irregular na estrutura

CCC. Estdo representados dois tetraedros para

enfatizar as intersec¢oes entre os clusters.

No presente trabalho foi utilizado como cluster bdsico o tetraedro irregular, mostrado em

linhas fortes na figura 2.1. O tetraedro particiona o reticulado CCC em quatro sub-reticulados,
denotados pelas letras gregas o, 3, Y e 8. O tetraedro irregular é o cluster tridimensional mais
simples a levar em conta as interagdes entre pares de primeiros (0, a—9, B~y ¢ p—9) e segundos
(0—B e y-9) vizinhos [10], bem como interagdes tetraédricas (a—f—y-9) [5]. Os componentes do

sistema — Co, Cr e Al — podem ocupar qualquer uma das posi¢des do tetraedro. Uma configuragdo
do tetraedro é representada por {i, j, k, I/, onde i, j, k e | indicam qual componente ocupa as
posigdes o, B, y e 8, respectivamente, com a seguinte relagdo: 1 =Co, 2 =Cre 3 = Al.

Subclusters de um cluster sdo todos os conjuntos de pontos, pares e tridngulos contidos no
mesmo, incluindo o préprio tetraedro. As configuragdes de um subcluster sdo definidas de maneira

semelhante as do cluster bdsico, indicada no pardgrafo anterior. Agora, devemos definir as

probabilidades de ocupagdo. Seja um subcluster A = {a, B, ...J qualquer. A probabilidade de uma

configuragio {i, j, .../ para esse subcluster, indicada por M ¢ dada por [5]:

iginen
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{a}

configuragio i, j, .../ para esse subcluster, indicada por p;" ¢ dada por [5]:
{a}
N
{ab _ ipe..
Pij. = "0} ’ 2.D
qg N

onde:
+ g™ é o nimero de coordenagio do subcluster, isto €, o nimero de subclusters A por posigdo no
reticulado da estrutura cristalina. Os valores de g*' sdo fornecidos na tabela 2.1, para todos os

subclusters do tetraedro irregular.

. N{(’:} é o nimero de subclusters A com a dada configuragio /i, j,... };

¢ N é o niimero total de posi¢Ges da estrutura cristalina.
{a}

Em particular, as probabilidades de ponto sdo dadas por p; . Indicaremos o cluster

basico, no caso o tetraedro irregular, pela letra A.
As probabilidades dos sub—clusters estdo relacionadas as probabilidades de tetracdro pelas

chamadas "relagdes de redugdo”. Por exemplo, para a configuragdo {i,j/ do par {a,[3/, essa relagdo é

dada por:

{aBl _ {aBy sl
Py = ‘Zl: Pt (2.2)

Tabela 2.1. Numeros de coordenacio g™ ¢ coeficientes de Kikuchi—Barker a™ para os subclusters
do tetraedro irregular no reticulado CCC. Tetr Irr = tetraedro irregular, Tr iso = tridngulo isésceles,

2viz = par de segundos vizinho e 1viz = par de primeiros vizinhos.

subcluster A configuragdes g™ |a®
Tetr Irr {oByd} 6 | 1
Tr Iso {apy}, {oyd}, {afy}, {BY8} | 3 | -1
2viz {aB}. {y8} 2] 1
lviz {oy}, {a8}, {By}, {BS} %1
Ponto {a}, {B}, {1}, {8} Y| -1

Usando o tetraedro irregular no sistema CCC, € possivel definir algumas estruturas
nesse reticulado, com base nas probabilidades definidas acima. Essas estruturas sdo chamadas e

supereticulados. Os supereticulados, juntamente com a sua notagdo Strukturbericht, estdo definidos
na tabela 2.2.

Departamento de Engenharia Metaliirgica e de Materiais Trabalho de Formatura 2000
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Tabela 2.2: Supereticulados no reticulado CCC utilizando o tetraedro irregular como cluster bdsico,

com relagio as probabilidades de ponto.

Estado .
Probabilidades de ponto
fundamental
A2 pﬁﬂ):pgﬂ):p(i)’):p(f)
B2 =P pY=p®
B32 p('ﬂ):p(lY);,:p(‘B):p(lts)
DO, i p P =

2.2. Formulagdo

2.2.1.Energia interna

Definido o cluster e suas probabilidades, devemos escrever a energia livre do sistema em

fung¢do dessas probabilidades. A energia interna do sistema € dada por [5]:

Al {4l {ab {A)
v = q szi_j.upu.u (2.3)
ijkl
onde os termos 5[3{, s30 os pardmetros de interagdo do tetraedro irregular, dados por:
gl = +-l—(£“)+£(”+£m+£(”)+l(£(2)+£(2))+l(2 +&  +E, +E )+§ 2.4
ijkt 6\ il jk g 4\ &l A NT ki T T kil T ki igkl (2. )

Nessa expressdo, as interagdes entre pares sdo indicadas pelos sobrescritos (1) para
primeiros vizinhos € (2) para segundos vizinhos. Os outros pardmetros sdo corregdes devidas as
interagdes entre tridngulos e entre conjuntos de quatro 4tomos, indicadas por um til (~). As fragGes
sdo necessdrias porque os pares de primeiros vizinhos sdo compartilhados entre 6 tetraedros, os
pares de segundos vizinhos sdo compartilhados entre 4 tetraedros e, finalmente, os tridngulos s3o
compartilhados entre 2 tetraedros.

Tomando como estado de referéncia a mistura mecinica dos componentes, os parimetros

5“}

ks S30 substituidos por:

Departamento de Engenharia Metaltrgica e de Materiais Trabalho de Formatura 2000



Capitulo 2: O Método de Variagdo de Clusters (CVM) 2.4

~ 1 ~
Wikt i.j,k,l_z Z m,mm.m
m=ijk
- 1 .
wi.j.k = Ei.j.k—-3- z En.n.n (5)
n=ijk
- - 1.
@ - go_Lgw_Lga
ij iLj 2 i 2 ji

Com essas relagdes, as energias de formagdo dos diferentes supereticulados definidos na
tabela 2 podem ser escritas em fungdo dos pardmetros de interagdo de maneira trivial. Entretanto,
no reticulado CCC, apenas quatro pardmetros de interagdo sdo necessdrios; os demais sdo escritos
como combinagdes lineares dos primeiros. Por razdes histéricas, prefere—se trabalhar com as
contribuigdes dos pares, completando—se o sistema de equages com duas interagOes relativas a

tetraedros. A escolha feita na referéncia [5], mantida no presente trabalho, estd indicada pelo

sistema 2.6:
Uf
Do, (A.5) 00 1/4 1/3
U’ _ 00 0 2/3 2 (1
Ufm - oV 1o 12 13| (W"W Waser Wiz w"”) (26)
- B3z 0t 1/4 1/3

O sistema de equagdes 2.6 fornece 12 parametros de interag@o em um sistema terndrio A—
B—C (quatro para cada terndrio). Supereticulados terndrios também sdo possiveis, fornecendo mais
seis pardmetros. Neste trabalho, entretanto, assumiu—se que os termos de corregdo destes sub-—

reticulados sao negligiveis.

2.2.2. Entropia

A entropia do sistema € dada por [5]:
__ Al {a} {a} Y v v
S=—q" Nk, ;{pij.k,llnpu,u_Nksz;\q a Z;p Inp 2.7
(53¢ ve con
onde kz= 8,31451 Jmol™' K™ é a constante de Boltzmann. A primeira somatdria leva em conta todas
as configurages do tetraedro, enquanto a segunda diz respeito a todos os subclusters. Os a” sdo os
coeficientes de Kikuchi—Barker, definidos na referéncia [5] e indicados na tabela 2.1.

Desenvolvendo a equagdo 2.7 com os valores da tabela 2.1, chegamos 2 expressdo para a entropia

Departamento de Engenharia Metalirgica ¢ de Materiais Trabalho de Formatura 2000



Capitulo 2: O Método de Variagio de Clusters (CVM) 2.5

do sistema baseada no tetraedro irregular. A expressdo obtida € bastante complicada, e serd omitida
aqui por restri¢des de espago. Entretanto, ela se encontra na referéncia [9], com uma notagdo um

pouco diferente.

2.3. Minimizacdo da energia interna

A energia livre do sistema é dada pela expressdo convencional G = U + PV — TS, onde G €
a energia livre de Gibbs, P ¢ a pressio, V o volume e T a temperatura, sendo U ¢ § a energia interna
e a entropia, jd definidas anteriormente. Em sistemas sélidos, no entanto, € comum negligenciarmos
o termo PV, j4 que a variagdo de volume € desprezivel face as outras varidveis [5]. Desta forma,
podemos utilizar a expressdo A = U — TS, onde A indica agora a energia livre de Helmholtz.

A energia livre do sistema é fun¢do do nimero de dtomos de cada espécie — logo, € fungdo
da composigdo ~ ¢ da temperatura. Entretanto, a dependéncia com a composi¢do ndo € adequada ao
cdlculo de diagramas de fases, jd que usualmente existe mais de uma fase em equilibrio no sistema,

cada uma com a sua composi¢do ¢ com a sua energia livre. Em um equilibrio heterogéneo, o que
se mantém constante em todas as fases € o potencial quimico W; de cada espécie. Por exemplo, se

existem duas fases em equilibrio termodindmico, ¢ e & em um sistema bindrio A—B, devemos ter:

uy = i,
(2.8)
uh = 1

Portanto, é desejdvel trabalhar com a energia livre em fung@o de W, ao invés de x;. Para essa
conversdo, procede—se com a transformada de Legendre da energia livre [5]. Esse procedimento,
porém, requer o conhecimento da dependéncia da composi¢do com o potencial quimico. A
formulagdio do CVM ndo fornece essa relagdo de forma analitica. Devemos nesse caso adotar um

procedimento alternativo. Fazemos isso definindo a fungdo F tal que:

F=A-N) ux (2.9)

i=1
onde n é o nimero de componentes do sistema. Devemos observar que os potenciais quimicos para
uma dada composi¢do ndo sdo todos independentes, j4 que estdo relacionados com a tangente a
curva da energia livre em fungio da composicdo, sendo que essa tangente € unica [5]. Além disso, 0

CVM, na formulagdo utilizada no presente trabalho, ndo modela lacunas [10]. Desse modo,
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podemos definir as varidveis u: , dadas por [3]:

l

Z (2.10)

1
n;

n

tais que p.=0 . Com essa nova varidvel, a fungdo F ¢ reescrita na forma:
i=1

F = A-N) u x, + const. (2.11)

i=1

Portanto, minimizar a energia livre em fun¢do da composi¢do equivale a minimizar F em

fungdo dos potenciais u . Um método numérico para esse procedimento ¢ o método de iteragdo

natural (Natural Iteration Method — NIM), desenvolvido por Kikuchi [10], no qual a fungdo F €
minimizada com relagdo as probabilidades do tetraedro por um algoritmo iterativo autoconsistente

[10}. O NIM est4 descrito nas referéncias [5] ¢ [10].
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3. O sistema Co-Cr CCC

3.1 Ajuste dos pardmetros de interacdo

3.1.1. Introdugdo

Para o ajuste dos pardmetros a serem utilizados no programa CVM, foram obtidos dados de
energia livre de excesso (ref. 8). O método utilizado para a obtengdo desses dados experimentais foi
a espectrometria de massa em célula de Knudsen. Antes de partir para o ajuste dos dados, vamos
inicialmente fornecer uma visdo geral sobre a técnica experimental e uma descri¢do um pouco mais
detalhada sobre o modo de tratamento matemético dos dados termodinimicos obtidos pela
referéncia citada.

Em primeiro lugar, abordamos as fun¢Ses de termodindmicas de excesso € suas relagdes
com as demais fungdes termodindmicas. O préximo passo € descrever o tratamento matematico
desses dados experimentais, chegando a expressdes para as fungdes de excesso, obtidas por uma
regressdo pelo método dos minimos quadrados.

De posse de expressOes para as fungdes de excesso, a descrigdo dos dados experimentais
estard completa. A préxima etapa ¢ ajustar esses dados para uso no CVM. Isso € feito através de
uma aproximagdo da solucio real por -uma solu¢do regular, obtendo assim os valores iniciais dos
pardmetros de interagdo. Esses pardmetros sdo posteriormente ajustados, por um método de
tentativa e erro, at€ obtermos os parimetros de interagdo definitivos do sistema Co—Cr CCC para

uso nesse trabatho.

3.1.2. Fungbes de excesso

A energia livre de Gibbs molar de mistura para uma solugdo sélida real é dada por:
AGY=) x.G' (3.1)

onde x; ¢ a fragdo molar do componente i e G; ¢ a energia livre molar parcial do componente i.

O sub—indice m indica que as grandezas sdo molares, isto é, dadas por mol de solugdo, e o sobre—

indice M indica que se trata de uma mistura, ou, no caso particular do sistema Co—Cr, de uma

solucdo sélida. Nesse caso, G; corresponde ao potencial quimico p; do componente i, de forma
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que podemos reescrever:
M
AGY=2 xm, (3.2)

E comum referir—se ndo 2 energia livre de mistura, e sim a energia livre de excesso, que €

dada por:
GE=AGY-AGE (3.3)

A introdugfio dessa grandeza é importante, pois € facilmente obtida experimentalmente (ver,

por excmplo, [11]). Dessa forma, a energia livre molar de excesso Gi ¢ a diferenga entre a

cnergia livre da solugdo real ¢ a energia livre de uma solugdo ideal, A G‘: .

Recordamos que uma solugdo ideal ¢ uma solugdo para a qual a entalpia molar de mistura

AH : ¢ igual a zero, ¢ os potenciais quimicos sdo dados por:
id 0
u'=p +RTInx, 3.9

sendo R a constante universal dos gases e T a temperatura. O valor [ ¢o estado de referéncia
i
. 0 . ~
do componente i. Para um elemento puro, o valor de u; ¢ zero, por convengdo. Portanto, para o

sistema Co—Cr, devemos ter ugone u0Cr=0 .

Desse modo, para uma solugdo ideal, utilizando—se as equagdes (3.2) e (3.4), chegamos a

uma expressdo para a energia livre molar ideal:

AGﬁ=RTZ x‘.lnxi (3.5)

Para uma solugio real, o potencial quimico € dado por:
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p=pu!+RTna, (3.6)

Nessa expressdo, introduzimos a atividade do elemento i, a;. Novamente, para um elemento
0
puro, u. =0 .

E possivel obter o valor da atividade em fung¢do do potencial quimico de excesso; para tanto,

fagamos a diferenca entre as equacdes (3.6) e (3.4). Essa operagio resulta em:
p—u'=RTIna,~RT Inx, 3.7

Entretanto, podemos definir uma outra fun¢do de excesso, o potencial quimico de excesso,

uf , que € dado por:

ui=p—p (3.8)

Voltando com cssa nova varidvel na equagdo (3.7) ¢ isolando a atividade a;, obtemos:

E
.
a=x.expl — (3.9)
‘ I RT

Como veremos, os dados experimentais obtidos na referéncia 8 resultam em valores para os

. . , - E x
potenciais quimicos de excesso u~ . Dessa forma, ¢ fundamental obtermos uma expressdo para

essa grandeza. Esses célculos serdo feitos mais adiante, através de um ajuste por minimos
quadrados.

3.1.3. Dados experimentais

Os dados da referéncia 8 foram obtidos por espectrometria de massa em célula de Knudsen.
A espectrometria de massa para a determinag¢do de fungdes molares de excesso € realizada através

de medidas das intensidades ibnicas de alguns isétopos caracteristicos correspondentes aos
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elementos da liga. Para uma descrigdo do método experimental, ver a referéncia 8.

Vamos nos restringir a liga que estamos usando, Co—Cr. As intensidades i6nicas nesse caso
sd0 Je € Jor , € 08 isOtopos rastreados foram o **Co e o *?Cr. Essas intensidades i6nicas sio funcoes
da temperatura ¢ da composi¢do da liga. A relagdo entre as intensidades idnicas ¢ a diferenga entre

o0s potenciais quimicos de excesso na célula de Knudsen € (ref. 8):

J
RT| In{ < }—In| = =ug-u£0+Cg(T) (3.10)

Nessa expressdo, CS(T) ¢ uma constante de calibragio dependente da temperatura,

levando em conta caracteristicas dos isétopos € da espectrometria de massa. Os estados de
referéncia, tanto para o cobalto quanto para o cromo sdo 0s elementos puros na mesma temperatura
da liga (1673 K).

O segundo membro da equagdo 3.10 contém as grandezas que se deseja determinar
indiretamente. Os dados experimentais sdo relativos as intensidades ionicas. Um modo mais
conveniente de tratar os dados termodinamicos € através de uma regressio dos dados de intensidade

i6nica. Uma equagdo adequada para isso é:

J
In| =< )=4"(x )+—C’) (3.11)

As constantes do(xCr) e d'(x .,) sdo os pardmetros de ajuste. Esses sdo fundamentalmente os

dados experimentais obtidos na referéncia 8, reproduzidos na tabela 3.1, juntamente com as

composi¢des das diversas ligas utilizadas para a obtengao desses dados.
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Tabela 3.1

Constantes do(xCr) . dl(xCr) da equagdo 3.11, em

fungao da fragio de cromo xc,

Fase CCC, T=1673 K

No Llxg)  dlx)
1 0,6742 4,2857 —3263,9
2 0,6782 3,5966 -2656,5
3 0,6981 0,9569 -2822.9
4 0,7320 4,1723 -3016,3
S 0,7420 3,7708 -2492.0
6 0,7651 4,1912 -2956,1
7 0,7940 3,9016 -2621,9
8 0,7940 4,0067 -2317,3
9 0,8163 4,2225 -2649,0
10 0,8409 3,8306 -2138,1
11 0,8658 4,1318 -1971,0
12 0,9227 4,1924 -1827,2

3.1.4. Tratamento matematico dos dados experimentais

Com os dados da tabela 3.1 e com as equagles (3.10) ¢ (3.11), obtemos valores para a
diferenc¢a entre os potenciais quimicos de excesso. O que desejamos é uma equacgdo para a diferenga
entre os potenciais quimicos reais da solugdo. Isso € feito através das equagdes 3.4 e 3.7. Com essas

duas equagdes, chegamos a expressdo procurada, da seguinte forma: temos, com as equagdes 3.4 ¢
3.7

uCoz RTIn xCo+ugo
M. =RT lnxCr+u§r

A diferenga entre essas duas equagdes nos fornece a expressio para a diferenga entre os

potenciais quimicos:
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X
ot =RT | =2 }+(uE ~uf) (3.12)

xCr

Entretanto, no capitulo 2, haviamos definido os potenciais {IJ}

. u,tu H,—H
e T (3.13)

Dessa forma, jd temos como relacionar os potenciais [u} , obtidos diretamente do CVM,

com os dados experimentais, através das equagdes 3.10, 3.11 e 3.12. Entretanto, ndo temos um

valor para a constante de calibragio C OG . Para obter esse valor, precisamos de alguma forma obter

uma expressio algébrica para a diferenga entre os potenciais quimicos de excesso. Essa expressdo é
obtida em fungiio de alguns pardmetros a serem ajustados pelo método dos minimos quadrados.

Um modo conveniente de obter a expressdo para a diferenga entre os potenciais quimicos de
excesso & usar séries de poténcias para o ajuste das fungdes termodindmicas de excesso, de acordo

com a expressdo abaixo:

N
ZE=x_ 2 C'xl, (3.14)
n=1
Nessa expressdo, Z ﬁ indica tanto a entalpia, a entropia ou a energia livre de Gibbs, todas
molares ( Z = G, H, S). N é o nimero de coeficientes Cf da série de poténcias. De posse da

~ . . E ~
expressdo para a energia livre molar de excesso, G, , obtemos as expressoes procuradas para os

potenciais quimicos de excesso.

A expressio da energia livre molar de excesso, de acordo com a equagdo 3.14, ¢

GE=x_ D, C°x% (3.15)
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O potencial quimico de excesso da espécie i € dado por:

E d(n.G%)
uf_(aG ) = — T m (3.16)
oOn, |nsn on,

n#n
P

onde nr € o nimero total de mols da liga e n; é 0o nimero de mols do elemento i. Desenvolvendo
essa expressdo em fungdo das fragdes molares, € ja colocando em fungio dos elementos da liga (Co
e Cr), chegamos as equagdes 3.17a ¢ 3.17b. Para a obteng¢io dessas expressdes, bem como das

expressoes (3.18a) e (3.18b), ver o apéndice A.

. . a(;j (3.17a)
uCo:Gm_xCr ax
Cr
oG:

E _ ~E
¢ ”Cr_Gm+xCaax (3.17b)

Cr

Realizando esses célculos, obtemos finalmente as expressoes para os potenciais quimicos de

€XCCSSO0:

N (3.18a)
ugf:xzoz nC:;x(C"'r_l)
y n=1
ug: Z C"Gx'ér( 1 —n+nxCr)
a=1 (3.18b)

Agora substituimos os valores dos potenciais quimicos de excesso na expressdo (3.10),
juntamente com os parametros d° e &' definidos na expressdo (3.11). O resultado é a expressdo

utilizada para a determinagdo dos coeficientes da série de poténcias para a energia livre molar de

. « G
€XCesso, ou seja, os coeficientes C :
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d' Xc 6\ Gl
RT| '+ | = ) [=CT+ 3 Oy [n—(1+n)x,,] (3.19)
Co

Os coeficientes C f s3o entdo ajustados através de um método de regressdo adequado. O

método escolhido na referéncia 8 foi um ajuste por minimos quadrados com N =2. Os valores dos
coeficientes obtidos estio listados na tabela 3.2. A concordéncia dessa regressdo estd indicada na

figura 3.1.

Tabela 3.2

a z o z
Pardmetros C" e a constante de calibragio C , barao

sistema Co—Cr CCC (C’?:C:{—T Cf)

n c!" Umob) C) Ufmol) C7 (fmol)
0 -18520 -20,62 15979
1 19500 19,40 -12866
2 —29500 -32,0 24573
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24000
22000 | ©
~& 20000 | .0
< : 0
< 18000
><0 O o 'O. @]
< 16000 | 0
1 + (@]
[ g
o i o
+ 12000 F
% :
~ 10000 |
X -
r Q
8000 |
6000'..4L[L..>...l=...:....r........|....
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
XCr

Figura 3.1 Ajuste dos pardmetros da tabela 3.2. Pontos: resultados experimentais [9]; linha: cdiculo CVM do
presente trabalho

Com o pardmetro C;; dado na tabela 3.2, podemos voltar a expressdo 3.10 e calcular os

valores de uE —-uE . A seguir, calculamos os valores de . —pu,. através da expressio 3.12. E,
Cr Co g Cr Co p

finalmente, calculamos y. = — HoHe , a partir da equagdo 3.13. O resultado desses
uCo 2

célculos estd reproduzido na tabela 3.3.
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Tabela 3.3
Potenciais quimicos para o sistema Co—Cr CCC a 1673K
(1k,-K=8,31451J/mol)

Ugr_ugo u- ugr—uga “‘
= — e— Co
X (J/mol) co 2

(k,-K)

(J/mol) B
0,6742  6382,03 16498,11 992,13
0,6782 1592,64 11962,84 -719,4
0,6981  3930,71 15591,14 937,59
0,7320  3002,51 16979,37 ~1021,07
0,7420  1059,16 15753,73 -947,36
0,7651 131785 17743,63 -1067,03
0,7940 -2274,58 16493,13 -991,83
0,7940 1719,98 20487,69 ~1232,04
08163 -15,14 20731,58 -1246,71
0,8409 -3631,54 19528,06 117434
0,8658 —825,89 25107,16 -1509,84
0,9227 -7346,07 2714575 ~1632,43

Nesse ponto, a descrigio dos dados experimentais pertinentes ao sistema Co—Cr estd
completa. Todas as varidveis termodindmicas necessdrias ao uso do CVM estiio calculadas ou estdo
expressas algebricamente. O préximo passo serd o ajuste dos pardmetros de interagdo iniciais. Isso €

feito na préxima se¢ao.

3.1.5.Energias de formagdo

Todos os dados termodinamicos disponiveis sdo relativos a fungdes de excesso, que foram
tratados para obtermos os dados de potencial quimico. A temperatura de 1673K, temperatura na
qual os dados foram obtidos, é alta o suficiente para que possamos tratar a solug¢do sélida como uma
solugdo regular. Para uma solugdo regular, temos que a entropia tem o0 mesmo valor que para uma
solucdio ideal, e portanto a entropia de excesso € nula. A entalpia € algum valor dependente das

energias de formago entre pares. Desse modo, podemos escrever:

H:=(AU ~AU“)=AU ~AUT (3.20)
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Nessa equacdo, jd foi feita a aproximagdo H_s=~U_ , sendo U a energia interna, jd que o

volume ndo € uma varidvel empregada no CVM. Além disso, relembramos que AU f:=0 .

No estado desordenado, as probabilidades de tetraedros podem ser reescritas na forma:

x,B.y.6 &
pl%i T mpl plpl pj=x.x %, (3.21)

Essa aproximagdo leva a:

AUP=(U )Xo+ (40 100 ) 25203+ (4U g +2U g ) 2205 +(4U
+(U

3
X X +
AT (3.22)

ABBB)

4
BBBB) Xg

Os estados de referéncia sio os elementos puros; portanto, Usas ¢ Ussss sdo nulos. A
equagdo 22 pode dessa forma ser reescrita como:
re, 2
AU =2, 3, AU g (U 130+ 2U 105 ) 3,2+ U gy 53 (3.23)
Fazendo a substituigdo xz = I—x, € definindo 6Uxs = 4Upas + 2Uaass, chegamos a:

A U,r:s :xa( 1 —xA) [(4UMAB_6UAB+4UABBB)xi+(6UAB—8UABBB)xA+(4UABBB)] (3.24)

A equag@o 3.24 servird ao ajuste em fungdo dos dados experimentais apresentados no item

anterior. Antes disso, ¢ necessdria apenas uma pequena transformagao:
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avup (40 s 600 40 ) +(6U 48 350) 2 H{ 4T 1) | 3:200)

x,(1-x,)

De acordo com a equagio 3.21, a entalpia molar de excesso € numericamente igual a energia

interna de mistura. Mas a equagdo 3.12 nos fornece uma expressio para o cdlculo da entalpia de

€XCESSOo:

n

N
Hi=x_ ) Clxl =AU (3.25)
n=1

No entanto, foram usados apenas dois termos na obtengio da série (N = 2). Desenvolvendo

a expressdo acima, temos:
reg H 2 H
AUT=x, x(Cl+a2 CT) (3.26)
Continuando o desenvolvimento da expressdo acima em termos de xc,, chegamos a:

AU
2 =(—CM)x +(C]+C]) (3.27)

2

xCaxCr

Comparando as equagdes 3.24a e 3.27, estamos aptos a determinar as energias de formag#o.
Essas energias serdo utilizadas posteriormente para o cdlculo dos pardmetros de intcragdo iniciais a

serem usados no CVM. Dessa forma, somos levados a:

4U ,, ,—6U ,+4U ;=0
6U ,;—8U spps=—C, (3.28)

_~H H
4UABBB_CI +C2
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P . H H -~ .
Relembrando, os valores numéricos dos coeficientes C° e C, sdo, respectivamente,

19500 e —29500 J/mol, de acordo com a tabela 3.2. Resolvendo esse sistema, chegamos a:

U, ,=~4875JImol=-+586k , K
U,,=+1583J/mol=+190k ,.K (3.29)
U \ppg=—2500J I mol=—298k ,.K

De posse desses valores, determinaremos oS paridmetros de interagdo iniciais, conforme

explicitado na préxima seg¢io.

3.1.6. ParAmetros de interag&o iniciais

A matriz relacionando os pardmetros do CVM com as energias de formagio de um sistema

binério é dada por (N é o nimero total de 4tomos do sistema):

Ulosam 00 1/4 1/3
UfB2 - oM o 12 13 " (WAW Wanss *ag w"”) (3.30)
» 832 01 1/4 1/3

A matriz do lado esquerdo da equagdo acima deve receber os valores das energias calculadas
na segdio anterior. Nessa equagdo, U ';,0)( a) corresponde a Uaaas, U {,o)( AB,) corresponde a U ages.

U{n corresponde a Uaass € Uﬁm corresponde a Uagas. Entretanto, naquela se¢@o foi definida a

varidvel 6U.s = 4Ussas + 2Uasss. Dessa forma, ndo temos os valores individuais das energias de
formacgio das fases B2 e B32, nesse primeiro momento. Note que, com essas relagoes, devemos
desconsiderar N na expressdo 3.30, jd4 que as grandezas da secdo anterior eram todas molares.

Os pardmetros a serem usados no CVM sdo as varidveis dadas na udltima matriz,

w2 e w? . Nesse ponto, todos esses valores devem ser determinados. Porém,

w ABBB’ AB AB

ABAB’w

se analisarmos esse sistema, veremos que temos cinco equagdes (as quatro do sistema 3.30 mais a
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equagdo 6Uas = 4Ussas + 2U.ass . definida anterirmente), com oito incégnitas; portanto, o sistema
ndo estd determinado. O procedimento a ser adotado aqui € fixar em zero o valor de dois dos
pardmetros de interagdo e calcular os demais. A escolha de quais pardmetros devemn ser mantidos
em zero baseia—se na experiéncia; entretanto, isso ndo fard grande diferenca nesse estdgio, jd que os
valores serdo posteriormente ajustados aos dados experimentais.

A escolha feita foi manter os pardmetros w,,, . € w(:; em zero. Substituindo os valores das

energias, ja calculados na segdo anterior, no sistema (3.30), mais a equagdo 6Uss = 4Uspas +

2U 88, temOS:

_ (1)
586k, K=2w,,
f (1)
Um—4ww
f (1}
Up,=2W,p 3.31)

~298k . K=6w, 0. +2 W'

ABBB AR

190k,.K=4U"_+2U",

B32

Resolvendo o sistema 3.31, encontramos os parimetros de interagdo desejados, juntamente

com as energias de formagdo das fases B2 ¢ B32. O resultado estd esquematizado na tabela 3.5.

Tabela 3.5
Parametros de interag¢do iniciais e energias de formagfo para o
sistema Co—Cr CCC
W cocrcocr W ocrcrer W(;z Cr W((g cr
0 —148 [£s.K] 0 +293 [ks.K]
U{zsz(COCr)M, U fDO‘(CoCr)) U}zr)o,(c.;, cr) U{;z(cOcr)

T=0K T=0K T~0K

+586 [ks.K] -301[ks.K] +586 [ks.K] 1173 [ks.K]

3.1.7. Ajuste dos dados experimentais — parametros de interagdo definitivos para o
sistema Co-Cr CCC

Nesse estdgio, temos os primeiros dados de entrada para um cédlculo usando o CVM,
fornecidos na tabela 3.5. Para verificar a concordncia dos cdlculos que faremos a seguir com 0s

dados experimentais, usaremos os valores obtidos para os potenciais quimicos, apresentados na
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Heo Fer C";uc’ , que jd havia sido definido anteriormente. Os

o
valores desse potencial estdo na tabela 3.3. Essg expressdo ¢ uma varidvel do CVM, ¢ portanto €

tabela 3.4. O valor a ser ajustado € u;o:

facilmente ajustada a dados experimentais, caso seja possivel obter dados para { u'} da literatura.
No caso dos dados da referéncia 8, isso é plenamente possivel, conforme jd visto, € portanto vamos
utiliza~los.

A figura 3.2 mostra os dados experimentais para { u'} fornecidos na tabela 3.4,

juntamente com a curva obtida com o CVM utilizando os pardmetros de interagdo inicais
fornecidos na tabela 3.5. O ajuste, como se percebe, ndo ¢ satisfatério. Isso € esperado, pois esses
parimetros sdo apenas um “chute”, uma vez que deliberadamente fixamos dois dos parametros em
zero, sem nenhuma justificativa a ndo ser a experiéncia. O préximo passo agora € obter um ajuste
melhor, através da variagdo dos parimetros de interagdo. O método para isso € um processo de
tentativa e erro, jd que ndo hd, até presenie momento, nenhum processo mais elaborado de
avaliagdo desses parametros. O ajuste definitivo também estd tragado na figura 3.2, mostrando uma
concordincia bem mais aceitdvel. A tabela 3.6 fornece os valores dos pardmetros de interagdo
utilizados para o ajuste definitivo.

As energias de formagdo mostradas na tabela 3.6 foram calculadas em fungdo dos novos
pardmetros de interagio. O processo ¢ exatamente o inverso do que foi feito na seg¢@o anterior:
agora, entramos no sistema (3.30) com os parimetros de interacdo € calculamos as energias de

formagao.

Tabela 3.6
Parimetros de intera¢do definitivos ¢ energias de formagdo para o sistema
Co—Cr CCC
wCoCrCoCr wCoCrCrCr W((i)' Cr w((_l':. Cr
0 +50 [ks.K] -380 [kz.K] +293 [ks.K]
f / f f
UB32(F¢,Cr)r_‘. UDO](FeCr,)'_" UDO,(F:,Cr)T_M_ UB’Z(Fe]Cr)r_“
—554 [kg.K] +316[ks.K] +16 [ks.K] +1173 [ks.K]
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0 T T T T — T T[T T T 7T
i Experimental (Vrestal et al) © ]
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-200 |- I
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06 0.65 0.7 0.75 08 0.85 09 0.95 1

X
Cr
Figura 3.2 Ajuste dos pardmetros de interacdo do CVM. A linha cheia mosira o ajuste definitivo, enquanto a linha
tracejada foi obtida com os valores iniciais obtidos para esses pardmetros. Os dados experimentais foram fornecidos
na tabela 3.3.

3.2. Diagrama de fases

3.2.1. Introdugédo

O primeiro passo paro o cdlculo do diagrama de fases é a andlise de quais fases estardo
presentes nesse diagrama. Isso € feito através de um grdfico chamado Diagrama de estados
fundamentais. As fases mais estdveis fornecidas por esse grifico serdo as encontradas no diagrama
de fases. Nesse topico, forneceremos um maior detalhamento dos procedimentos para o cdlculo de
diagramas bindrios em geral, usando o exemplo do sistema Co—Cr. A teoria relacionada ao cdlculo

dos equilibrios e aos diagramas de estados fundamentais ¢ fornecida no capitulo 2.

3.2.2. Diagrama de estados fundamentais
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Capitulo 3. O Sistema Co—Cr CCC 3.17

Para o caso de um sistema bindrio, o diagrama de estados fundamentais € obtido plotando as
energias de formagdo a 0 K contra a composi¢do da liga. As energias de formagfio j4 foram
calculadas e estio na tabela 3.1. A 0 K, a composicio das fases B2 e B32 é de 50at—%, ou seja,
essas fases apresentardo a sua composi¢ido estequiométrica tipica. As composi¢des das fases DO,
serdo de 25at% Cr para a fase Co;Cr e 75at%Cr para a fase CoCrs, pelo mesmo motivo. O diagrama
estd mostrado na figura 3.3.

1300 ¢
1200
1100

1000 B2 (CoCr)

©

700

e}
DO, (CoCry)
A2 (Co) A2 (Cr)

o]

D0, (CozCr)

Energias de formacao (kg.K)

THIIITINILIIE

B32 (CoCr)

R D PSSP [0SO U NS ORI 0 SN VI U W 1S T R S U T T M O S S H O S S
0 0.1 02 03 04 0.5 0.6 0.7 0.8 0.9 1

Xcr

Figura_3.3 Diagrama de estados fundamentais para o sistema Co—Cr CCC usando os valores para as energias de
formagdo a 0 K fornecidos na tabela 3.6.

Através do diagrama de estados fundamentais, percebemos que a fase mais estdvel € a fase
B32, j4 que ela apresenta a menor energia de formagdo. Logo, o diagrama de fases deverd

apresentar um equilibrio entre as fases B32 e A2.

3.2.3. Diagrama de fases Co-Cr

O diagrama de fases calculado para o sistema Co—Cr—Al CCC estd apresentado abaixo.
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Capitulo 3. O Sistema Co—Cr CCC 3.18

Nesse diagrama, podemos notar um estreito campo de estabilidade da fase B32. A tranmsi¢do

A2/B32 é de 1* ordem, e o campo de separacdo de fases € bastante amplo, apesar de ir diminuindo

com o aumento da temperatura. O pico de temperatura esta a 942 K, com x, = 0,53 . Uma

forte assimetria pode ser verificada no sistema, mostrando que a fase desordenada A2 ¢ mais
estdvel a baixas temperaturas para composi¢des mais ricas em cobalto. O mesmo acontece com 0

campo da fase B32, deslocado para maiores teores de cobalto.

1100

//\\
f// \

".

hN
B32 \

700

I
\

300 /
[+] o1 0.2 03 04 0.5 08 07 o8 09 1

Xcr
Co Cr

T(K)

Figura 3.4 Diagrama de fases do sistema Co~Cr calculado com os pardmetros de interagdo da tabela 3.6
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4. O sistema Co-Al CCC

4.1. Introdugéo

O sistema Co—Al CCC foi tratado recentemente por Colinet, Inden e Kikuchi [10], e foi
modelado usando 0 CVM, como parte do sistema terndrio Fe—Co—Al. Os autores apresentam uma
discussdo a respeito dos pardmetros de interagdo utilizados, € calculam os diagramas bindrios do
sisterna, juntamente com seis segOes isotérmicas e trés isopletas. Para o presente trabalho, os
parimetros de interagio foram modificados. Nesse capitulo, temos por objetivo discutir os
pardmetros de interagfio originais, bem como a altera¢do desses pardmetros. A seguir, calcularemos

o diagrama de fases do sistema Co—Al CCC através do CVM.

4.2.Pardmetros de interacdo

(k)

Os pardmetros de interagdo w .,

obtidos por Colinet et al. [10] nio puderam ser
determinados diretamente a partir das temperaturas criticas de ordenamento no sistema binério,

como foi o caso do sistema Fe—Al, porque a estrutura CCC ¢ estdvel apenas na forma da estrutura

ordenada B2 com x, ~ 0,5 . Por essa razdo, o método de determinagdo dos parimetros de

interagdo foi baseado na comparagio com o diagrama de fases experimental do sistema Co—Al.

(2)

Esse diagrama [10] impSe um limite superior ao pardmetro w/ . , jd que a temperatura critica

bo, -~ B2

T nio deve entrar no campo de estabilidade da fase B2. Isso estabelece que

w(gj >~ 150k, K , aproximadamente. Colinet et. al. utilizaram esse limite para o célculo.

(1

O valor do pardmetro w.,,

foi determinado a partir das temperaturas criticas de

ordenamento 7% ~ 4?2 observadas no diagrama de fases experimental nas composi¢des préoximas

ao terndrio Fe—Co (do sistema Fe—Co—Al tratado por Colinet et al.). O valor desse pardmetro foi
estimadoem —1800k,K

O resultado do cdlculo mostrou que, apesar do discutido acima, a linha D0,—B2 penetra
no campo de estabilidade da fase B2 obtido experimentalmente. Esse fato justifica, no presente
trabalho, a adogdo de pardmetros ligeiramente modificados, com base nos pardmetros de Colinet et
al. O critério para esses novos parimetros foi 0 mesmo que o desses autores. Com esses novos
pardmetros, o campo de estabilidade da fase DO, (calculado) localiza—se totalmente fora do

campo da fase B2 (experimental). Na verdade, o tnico valor que precisamos alterar € o0 pardmetro
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(2)

w CoAl

, j4 que é o pardmetro responsdvel pela incompatibilidade entre os diagramas calculado €

experimental. O novo valor estabelecido para esse pariametro foi w(czt), y = —000k K .

Os autores da referéncia [10] utilizaram apenas parimetros de interagdo entre pares de

primeiros ¢ segundos vizinhos. Nio foram usados parimetros relativos aos tetraedros. Essa

restricio nos leva a obter um diagrama de fases simétrico com relagdo a x,,=0,5 , conforme

veremos a Seguir.

4.3.Diagrama de fases

No caso do sistema Co—Cr, discutido no capitulo 3, foi necessdrio o uso de um diagrama de
estados fundamentais, jd que nio sabiamos que fases estariam presentes no modelamento. No caso
presente, isso ndo é necessdrio, uma vez que OS parametros foram determinados em fungdo das
fases que estariam presentes no sistema. Essas fases sdo B2 ¢ D0s. O resultado estd representado na

figura 4.1.

4000 |-

Figura 4.1 Diagrama de fases do sistema Co—Al CCC, calculado com O =—1800k,K e 2 —_600k,K -

W= We =
CoAl CoAl
Como ndo foram utilizados parémetros de interagdo entre tetraedros, o diagrama resulta simétrico em relagdo a

xM=O,5 .
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Capitulo 4: O sistema Co—Al CCC 4.3

Com relagdo ao diagrama de fases calculado na referéncia [10], percebemos um
abaixamento em torno de 200K com relacio ao pico da regido de estabilidade da fase DO3.

Entretanto, a estrutura B2 tornou—se mais estdvel, com um pico em torno de 4100K, S00K mais

alto que o obtido por Colinet et al. Percebe—se a simetria do diagrama em relagio a x M=O,5 A

transi¢io de fases A2/B2 € de segunda ordem, enquanto que a transi¢do A2/D0; € de primeira
ordem em uma ampla faixa de composigdes. A transi¢do B2/D0, ¢ de segunda ordem, com apenas

um pequeno trecho préximo 2 transi¢do A2/D0s, que € de primeira ordem.
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5. O sistema Cr-Al CCC

5.1. Introdugéo

Os dados relativos ao sistema Cr—Al foram extraidos de [6], tendo sido utilizados no
modelamento do sistema Cr—Al-Ti CCC [5]. Esses dados baseiam—se em valores experimentais de
atividade do aluminio no sistema Cr-Al a 1000°C, que foram ajustados com o CVM, em um
procedimento muito semelhante aquele descrito na secgéo 3.1.6 do presente trabatho. Neste capitulo
vamos descrever os dados experimentais de [6] e os procedimentos utilizados em [5] para a

obtengdo dos parimetros do CVM relativos a esse sistema.

5.2. Dados experimentais

A atividade do aluminio em diversas ligas no sistema Cr—Al foi determinada usando uma
técnica isopiestica entre 890 e 1126°C, com a fragdo de Al variando entre 0,13 ¢ 0,80 [6]. Os

autores detectaram um amplo campo de estabilidade da fase A2 na temperatura de 1000°C,
extendendo—se até x, =~ 0.42 . Esses valores experimentais, para as fragdes de aluminio

correspondentes ao campo da fase A2 estdvel, encontram—se na tabela 5.1, e estdo representados

graficamente na figura 5.1

Tabela 5.1. Valores experimentais para a atividade do aluminio no sistema Cr-Al a 1273K [6]

X —lo X _loga X _q Lar 1
!(at—%) 5w (at-%) o8 Gu (at—%) el (at-%) B hu
3796 111 | 1855 232 |2852 181 2651 L83
3648 122 1707 238 [2601 196 |2417 195
3404 136 | 1581 246 2382 209 [2095 2,07
3351 146 | 1469 253 (2137 221 |21,08 2,17
13024 159 |13.88 2,58 [17.96 231 |4123 1,08
2010 170 |42,16 097 |17.02 240 [3981 1,18
662 181 3991 112 41,12 1,02 [3787 1,29
2478 190 3828 125 3851 1,14 |3674 139
2481 198 3659 135 3666 129 [3214 1,59
208 208 3450 145 3406 141 [3077 1,67
2156 214 |3189 1,58 |31,58 1,55 2650 1,86
1865 224 |2998 170 |2759 1,69
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Figura 5.1. Atividades do aluminio no sistema Cr—Al a 1273K [6]
5.3.Ajuste dos dados ao CVM

O ajuste foi feito por tentativa e erro, em um procedimento semelhante dquele feito para o

ajuste das energias livres de excesso do sistema Co—Cr (segdo 3.1.6). Esse ajuste foi realizado em

[5], na andlise do sistema Cr—Al-Ti. O resultado do ajuste ¢ fornecido na figura 5.2. Os parimetros
do CVM obtidos através desse ajuste estdo na tabela 5.2.

WCrMCrAl wCrAlAlAl w((,?r), Al w(CEr). Al
—60 [ks.K] 0 ~290 [ks.K] —660 [k5.K]
f f f f
Usjz(cm)r_" UDo,( ALCr) U po,(cr, Al ., Um(cml)r_"
—2550 [ks. K] -1755.67[ks.K] —1755.67 [ks.K] —2640 [kz.K]

O pardmetro de interagdo w,,,, foi mantido em zero, de forma a manter o diagrama de
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Capitulo 5: O sistema Cr—Al CCC 5.3

fases (calculado pelo CVM) simétrico, com relagdo a x,,=0,5 . Isso € justificado pelo fato de os

dados experimentais limitarem—se a uma fragiio molar de aluminio de até 0,43, ou seja, apenas

metade do diagrama.

0.125

0.1

0.075

CTY]

0.05

0.025

0.1 0.5

Figura 5.2. Ajuste dos dados experimentais da tabela 5.1 [6] usando para a obtengdo dos pardmetros de interagcdo
da tabela 5.2 [5]

5.4Diagrama de fases

Os pardmetros da tabela 5.2 foram utilizados para o cédlculo do diagrama de fases, exibido
na figura 5.3. Nota-se a simetria em relagfio a linha central do diagrama (fragdo de aluminio igual a
0.5), como era esperado. O mdximo de temperatura da fase B2 encontra—se a 999K. As regides de
estabilidade da fase DO, apresentam um méximo 2 temperatura de 612K, com x,=0.34 . O

cdlculo mostra que hd uma regido de equilibrio de primeira ordem A2/ DOs.
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1100

900

800

700 B2

T(K)

600 A2

500
DO, DO,
400 /

0 0.1 02 0.3 04 0.5 06 0.7 0.8 0.9 1

Cr XAl Al

Figura 5.3. Diagrama de fases do sistema Cr—Al CCC calculado a partir dos pardmetros de interagdo fornecidos
pela tabela 5.2 [5]
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6. O sistema Co-Cr-Al CCC

O diagrama de fases ternario Co—Cr—Al CCC foi calculado a partir dos pardmetros de
interacdo obtidos através dos procedimentos descritos nos capitulos 3, 4 e 5. Os resultados sdo
mostrados juntamente com algumas tie-lines calculadas e outras experimentais obtidas da
referéncia [3]. Também estdo representados alguns pontos experimentais de scgunda ordem,
também determinados pela referéncia 3. As temperaturas das se¢des isotérmicas foram escolhidas a
partir dessa mesma referéncia, para a comparagdo dos resultados. A figura 6.1 apresenta
resumidamente as quatro segdes isotérmicas calculadas, a 1273K, 1473K, 1573K e 1623K. Os
pardmetros de interagdo estdo na tabela 6.1. Detalhes dos célculos e da confecgdo dos diagramas

sdo fornecidos mais adiante.

(a) A \ 0. (b)
T-1273K . T-1473K

Co

© (@
T=1573K T=1623 K

Xa

Figura 6.1. Segdes isotérmicas do sistema Co—Cr—Al CCC calculados com os pardmetros da tabela 6.1. Linhas
pontithadas: tie—lines calculadas; circulos: tie—lines experimentais [3]; quadrados: pontos de la ordem
experimentais {3]. Temperaturas: (a) 1000°C; (b) 1200°C:; (c¢) 1300°C; (d) 1350°C;
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6.2

Tabela 6.1. Par@metros de interacdo utilizados no cdlculo dos diagramas de fase do sistema Co—Cr-Al CCC

w w

(2)

w

w(l)

CrAlCrAl CrAlAlAl Cr,Al Cr, Al
—60 [ks.K] 0 —290 [ks.K] —660 [kz.K]
(2)
WCOAICOAI wCoAMMl W(?a, Al W(C;Z, Al
0 0 —600 [ks.K] —1800 [ks.K]
(
W eocrcocr W cocrerer (i:.Cr (cll,a
—60 [ks.K] 50 [ks.K] —380 [ks.K] +293 [ks.K]

Observamos na figura 6.1 que apenas equilibrios entre as fases B2 e A2 sdo encontrados nos

diagramas, com apenas um pequeno campo de estabilidade da fase D05 a 1273K. Se analisarmos os

diagramas bindrios dos capitulos 3, 4 e 5, perceberemos que, nas temperaturas das segOes

isotérmicas da figura 6.1 apenas as fases B2 e A2 sdo estdveis. A 1273K, a fase DO ainda € estdvel

no sistema Co—Al, ¢ portanto deverd ser observada no diagrama terndrio. E o que percebemos na

figura 6.1.a.

As tabelas 6.2 ¢ 6.3 apresentam os dados experimentais usados para a comparagdo da figura

6.1, obtidos da referéncia 3.

' Tabela 6.2. Composigées de equilibrio entre as fases A2 e B2 no sistema Co—Cr-Al [3].

Temperatura

O

A2

xCr

X ar

B2

xCr

xAI

|
!1000

0,758
0,706

0,091
0,264

0,058
0,046

0,465
0,499

1200

0,506
0,568
0,603
0,649
0,720
0,697
0,596
0,549

0,130
0,122
0,145
0,149
0,149
0,194
0,329
0,380

0,427
0,343
0,274
0,203
0,129
0,112
0,116
0,151

0,180
0,256
0,331
0,387
0,433
0,456
0,492
0,507

1300

0,561
0,592
0,576
0,572
0,496

0,185
0,210
0,286
0,319
0,388

0,451
0,320
0,182
0,172
0,213

0,246
0,339
0,452
0,464
0,485

1350

0,527
0,498
0,470
0,524

0,320
0,366
0,403
0,256

0,227
0,213
0,222
0,395

0,445
0,480
0,480
0,321
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Tabela 6.3. Composicdes criticas correspondentes a transicd@o de segunda ordem entre as fases B2 e A2 no sistema

Co-Cr-Al [3]
Temperatura | Composicdo critica
(°C) Xer Xt
1200 0,442 0,125
0,338 0,154
1300 0,426 0,166
0,484 0,169
0,337 0,175
1350 0,442 0,185
0,477 0,206

A seguir fornecemos algumas representagdes mais ampliadas dos diagramas de fases
calculados, os mesmos que os da figura 6.1. Para o cdlculo desses diagramas, foi necessério o uso
de um método de suavizacdo de curvas. Esse método estd descrito no apéndice C. Essa suavizagdo
foi necessdria porque em algumas regides os diagramas apresentaram uma perturbagdo nas linhas
dos equilibrios de primeira ordem. Essa perturbag¢do provavelmente foi resultado do grande niimero
de pontos determinados no cdlculo, muito pr6ximos entre si. Essa € uma caracteristica do algoritmo
do programa CVM usado no cdlculo. A convengio adotada nesses gréficos € a mesma da figura 6.1.

Os resultados mostraram um ajuste razodvel, comparados aos dados de atividade e energias
livres de excesso nos sistemas bindrios. O sistema terndrio apresentou um bom ajuste também,
apesar de o campo de estabilidade da fase B2 verificado experimentalmente ser menos amplo que o
calculado.

Um ajuste mais aceitdvel pode ser obtido para esses diagramas, alterando os pardmetros do

sistema Cr—Al. Esse sistema, assim como o sistema Co—Al, mostra—se simétrico com relagdo a

x,,=0.5 . A razdo para esse fato € que os pardmetros W .., desses dois sistemas binérios foram

fixados em zero. No sistema Cr—Al, podemos variar esse pardmetro, bem como o parimetro

W, e - de forma a apnmorar o ajuste. Além disso, os dados experimentais para os equilibrios de

primeira ordem se referem ao equilibrio incoerente entre as fases B2 ¢ A2 (i. ¢. o volume molar
pode relaxar para um valor diferente para cada fase no equilibrio termodinimico), alterando o
formato de domo de imiscibilidade. Como o presente formalismo CVM ndo considera a
dependéncia no volume da energia livre, este efeito ndo pode ser modelado. O paralelismo entre as
tie—lines (que sdo efetivamente linhas de isoatividade do sistema) demonstra entretanto que o

modelamento termodindmico do sistema € aceitdvel com o0s presentes parimetros.
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T=1000°C

Cr

Co Al

XAl
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T=1200°C

Cr

Co Al

Xal
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T=1300°C

Cr

Xor

0.2

Co Al

XAl
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T=1350°C

Cr

Al

XAl
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Apéndice A: Potenciais quimicos de excesso

Os nossos objetivos nesse apéndice sdo:

+ deduzir expressdes genéricas para os potenciais quimicos de excesso ¢ fungdo da
composigio (Egs. 3.17a e 3.17b), para uma liga bindria;

« com as expressdes para os potenciais quimicos de excesso, deduzir as expressdes 3.18a e

3.18b, que sio o ajuste por série de poténcias para o sistema Co—Cr.

A.1. Potenciais quimicos de excesso

O potencial quimico de excesso do elemento i ¢, de acordo com a equagdo 3.16:

uf=(aGE) (#re2) (A1)
Tn#n

~ ¢ . . ~ E - - .
Nessa equagdo, G° € a energia livre da solugio e G, ¢ a energia livre molar dessa

solugio. n, é o nimero de mols da espécieie n, ¢ o nimero total de mols da solugdo. O que

nos propomos a fazer é deduzir uma expressdo para os potenciais quimicos de excesso em fungdo
das fracdes molares dos elementos da liga e da energia livre molar de excesso.

Utilizando a regra da cadeia, obtemos:

(A.2)

Nessa equagdo, as grandezas mantidas constantes foram omitidas para maior clareza. A
partir desse ponto, vamos comegar a nos referir aos elementos da liga, ao invés de trati—los

genericamente pelo sub—indice i.

Usando o fato de que n,.=n_+n. ,chegamos a:

Assim, o primeiro termo do segundo membro da equagdo A.2 estd determinado. Resta—nos
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definir o segundo termo. Para isso, devemos expandir a derivada parcial em termos da fragdo molar

de cobalto da liga, usando a regra da cadeia:

E
8G:  8G: ox,, Ox,

‘ (A.3)
anCo axCr axCo anCo

O objetivo dessa expansdo ¢ deixar a derivada da energia livre em funcdo da fragdo de

cromo da liga. O motivo é manter a coeréncia com os métodos do capitulo 3.

: dx
Prosseguimos notando que, como x.+x,=1 ,devemoster “~¢& _ _

ox,,
Para a altima derivada parcial, lembramos que:
x = nCo
Co
nCo+nCr
e portanto:
axCo:1‘(nCr—I'_nCa)_.nCo.l: nc, :xCr
on )2 ( > n

Co nCo+nCr nCo+nCr T

Com esses ultimos resultados, obtemos a expressdo procurada para o potencial quimico de

excesso do primeiro componente da liga:

oG~

He,=Gp=te, o (A4)

Cr

Para o potencial quimico de excesso do cromo, utilizamos a relagio:

E E E
Gm:xCouCo+xCruCr (A'S)

Com essa expressdo e a equacio A.4, chegamos a:
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E

(A.6)

As equagdes A.4 e A.6 sdo as equagdes procuradas, ¢ sd30 as mesmas equagdes 3.17a e 3.17b

da secdo 3.1.4.

A.2. Obtencao de equacoes algébricas para os potenciais quimicos de excesso

As expressdes A.4 e A.6 nos fornecem um meio de obtermos os potenciais quimicos de
excesso para os elementos de uma liga bindria. Entretanto, aquela equagdo traz uma derivada
parcial da energia livre de excesso em fun¢do da composi¢do. Essas expressdes s6 podem ser
expandidas se tivermos equagOes para a energia livre. Caso contrdrio, devemos resolver
numericamente a derivada.

No caso do ajuste do sistema Co—Cr, haviamos obtido expressdes em série de potencias

para a energia livre de excesso (eq. 3.15), dadas por:

N
Gi=x_) C°x. (A.7)

O potencial quimico do cobalto € dado pela equagdo A.4. Para desenvolvé—la, devemos

derivar a expressdo acima em relagdo a fragdo de cromo, x¢ . Isso € feito sem maiores problemas,

lembrando que 9%c, — —1 ecusando aregra da cadeia:
a'xC}
aGE N N
m G _n G _n-—
a.x = __:E: (jn'xC}_F'be:Ez ’l(jN"xCrl
n=1 n=1

Cr

Com essa expressdo na equagio A.4, obtemos a primeira das equagdes 3.18:
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' N N N
E _ G_n G n G _n
uCo - xCoZ Cn xCr+xCrZ Cn xCr xCoxCrZ nCn xCr (A'S)
n=1 n=1 n=1
ou:
N
E _ G _n o
"ICO—Z Cn xCr(xCo+xCr nxCo)
n=1
e, finalmente:

uE =3 Coxr (1-nx, )= Coxt (1-ntnx,) (A9)
n=1 n=1

A dltima expressdo acima ¢ a cquagdo 3.18b. Para a outra cquagio, podemos repetir o
procedimento feito para obter a cquagdo 3.18b, mas usando a equagdo A.6 ao invés da equagio A 4.

Um procedimento alternativo € usar a equagdo A.5. Vamos utilizar essa ultima expresséo:

N N

G .n G n . E

xCoZ Cn xCr_xCo Cn xCr(l n'xCo)+xCruCr
1

n=1 n=

N

E __ G _n _ 2
xCruCr_Z [Cn xCr(xCo xCo+nxCo):|

n=1

O resultado é a equacdo 3.18a: E__ 2 ZN: nCO ! (A.10)

A.3. Referéncias
McGlashan, M. L., Chemical Thermodynamics, Academic Press, London, 1979.

Havrankova, J. Vrestal, J. Tomiska, Berichte Bunsenges. Phys. Chem. 102, 1225-1230 (1998).
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Apéndice B: Diagramas terndrios no GNUPLOT

Grande parte dos diagramas apresentados nesse trabalho foi obtida através do software
GNUPLOT v. 3.7, rodando no ambiente UNIX. O objetivo desse apéndicc ¢ listar os

procedimentos necessdrios para a elaboragdo de diagramas terndrios usando o GNUPLOT.

B.1. Macros e saida gréfica

A grande vantagem do GNUPLOT ¢€ a possibilidade de carregar informagdes através de
macros, ou seja, arquivos contendo os comandos necessdrios para a confec¢do do grafico. Outra
vantagem importante ¢ a saida do programa: existc a op¢do de salvar o grifico no formato
postscript. Os grificos nesse formato podem ser inseridos diretamente em processadores de texto ou
convertidos em arquivos GIF ou JPEG, se necessirio.

A principal desvantagem na utilizagdo do GNUPLOT para diagramas de fase terndrios é que
esse programa ndo inclui o tridngulo de Gibbs como um tipo de grafico padrdo. Portanto, os eixos,
as linhas de grade ¢ os titulos devem ser todos inseridos "manualmente”. Da mesma forma, a
conversdo entre o sistema de coordenadas triangulares (usados no tridngulo) e as coordenadas
cartesianas usuais também deve ser fornecida na macro de entrada do programa. Essa
transformagdo de coordenadas também precisa ser calculada e introduzida "manualmente” no
GNUPLOT.

B.2. Coordenadas trianquiares

A figura B.1 abaixo mostra esquematicamente um diagrama de fases terndrio A~-B-C. O
ponto P apresenta uma composi¢io xz do elemento B € xc do elemento C, em termos de fragdes
molares. Vamos partir do seguinte: temos as coordenadas triangulares do ponto P, ou seja, sabemos
a sua composi¢io (xz € xc), € queremos calcular as coordenadas cartesianas (x» € yp) desse ponto.

Para realizar a transformacio, vamos considerar o tridngulo PMN da figura B.1. Nesse

tridngulo, temos:

sen(60°) =

3|3
i
|

(B.1)



Apéndice B B B.2
A
y
C
//
// \
VA
/ /
X.. P/
Yprrro e = =
2
/ 60° ! \
M N
A Tp Xp B X
Figura B.1: Diagrama de fases terndrio (esquemdtico)
[solando ye na expressdo B.1, ficamos com:
Vo = X sen(60°) (B.2)
Do mesmo tridngulo, temos:
. MN X,—X
cos(60°) = = L £ (B.3)
M X,
Substituindo o valor de yr encontrado na expressao B.2 e isolando xp, chegamos a:
x, = x,+x,. cos(60°) (B.4)
Portanto, a transformagdo de coordenadas € dada por:
x, = x,+x. cos(60°)
P B B C (600) (BS)
Yy, = X, Sen
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Com a transformacdo B.5, estamos preparados para usar os diagramas triangulares no
GNUPLOT. As linhas de grade e os eixos podem ser tragados usando essas transformagdes da

seguinte forma:
» 0 eixo A—-B é simplesmente 0 €ixo x (xCIO) ;
» oeixo A—C ¢ aimagem dareta x,=0 em relagdo a transformagdo B.5;
> da mesma forma, o eixo B-C é aimagem dareta x,+x.=1 ;
> as linhas de grade paralelas ao eixo x sdo a imagem das retas  x.=cte ;
» aimagem das linhas x_,=cre correspondem as linhas de grade paralelas ao eixo A-C;

> finalmente, as linhas de grade correspondentes a X ,=cfe sdo a imagem das retas

xB+xC=I—Cre , uma vez que xA+xB+xC:1

B.3. Uso do GNUPLOT

Uma descri¢gio dos comandos do GNUPLOT foge aos objetivos do presente trabalho.
Portanto, vamos nos restringir ao suficiente para a plotagem de um diagrama terndrio usando esse

aplicativo.

B.3.1. Descrigdo dos comandos do GNUPLOT

A entrada dos comandos, como ji foi dito, pode ser feita através de uma macro de
comandos. Essa macro pode ser gravada em qualquer editor de textos, € o arquivo correspondente
pode ter qualquer extensdo. No caso, o nome escolhido foi ' ternary.gnu’. Esse arquivo estd
reproduzido no final desse apéndice. Aqui, nos limitaremos a descricdo dos comandos mais
importantes.

» Primeiramente, o caracter # indica um comentério; o programa ignora qualquer coisa a partir
desse simbolo até o fim da linha.

» Os comandos set definem algumas das opgdes do programa, como o formato de angulo
(graus, radianos), titulos, legenda, razdo entre eixos, etc.

» & possivel usar fungdes definidas pelo usudrio. No caso do diagrama terndrio, queremos entrar

com a transformacdo B.5. Essas fungdes estio definidas logo no comego da macro, e foram
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B4

chamadas de ternx (x, y) € terny (y); elas nada mais sdo que as equagdes B.5:

ternx(x,y) = x+y*cos(60°)
rerny(y) = y*sin(60°)

o comando set arrow traga uma seta entre dois pontos; a op¢do nohead indica que a seta
se degenera em uma linha reta.

o comando set label posiciona um texto qualquer em uma posigdo definida.

o comando plot "nome do arquivo" {opg¢des} traga a curva dada pelos pontos no
arquivo. Para incluir outra curva no mesmo gréfico, usamos replot ao invés de plot.

set output "nome.ps" muda a saida para o arquivo postscript correspondente. Desse
modo, podemos salvar o grifico.

para ativar a macro, digitamos o comando load ’ternary.gnu’ nalinha de comando do
GNUPLOT.

o arquivo com os dados (no caso chamado de ‘ CoCrAl.txt’)contém os dados para os
pontos do diagrama de fases. Dentro dos comandos plot e replot, hd a op¢do using
($coll): (ScolzZ), que indica que, das varias colunas que o arquivo de dados possa ter, 0
grafico serd feito usando a coll no eixo x e a col2 no €ixo y.

na drea rotulada "User—defined"” sdo feitas as modificacdes necessdrias, ou s¢ja, os titulos do

gréfico e dos eixos e os nomes dos arquivos de entrada ¢ saida.

B.3.2. A macro ‘ternary.gnu’

termny(y)=y*sin(60)

reset

sct angle degrees
set xrange [—0.15:1]
set yrange [-0.15:1]
set clip

set nokey

set noborder

set NOzZeroaxis

set noytics

set noxtics

set nogrid

set size square

# batch file ternary.gnu
# Gibbs triangle for GNUPLOT
# Latest version by Luiz Eleno July 26th 2000

# transformations for triangular coordinates
ternx(x,y)=x+y*cos(60)
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# gnd:
set linestyle 1 1t 0
# axes:
set linestyle 2 It —

#grid ticks
c1=0.1
¢2=0.2
¢3=0.3
c4=0.4
¢5=0.5
¢6=0.6
c¢7=0.7
c8=0.8
c9=0.9

# axes

sct arrow 1 from
set arrow 2 from
set arrow 3 from

# gnd

set arrow 4 from
set arrow 5 from
set arrow 6 from

set arrow 7 from
set arrow § from
set arrow 9 from

set arrow 10 from
set arrow 11from
set arrow 12 from

set arrow 13 from
set arrow 14 from
set arrow 15 from

set arrow 16 from
set arrow 17 from
set arrow 18 from

set arrow 19 from
set arrow 20 from
set arrow 21 from

set arrow 22 from
set arrow 23 from
set arrow 24 from

set arrow 25 from
set arrow 26 from
set arrow 27 from

set arrow 28 from
set arrow 29 from
set arrow 30 from

2

ternx(0,0),terny(0) to ternx(1.0,0),terny(0) nohead 1s 2
ternx(0,0),temy(0) to ternx(0,1.0),terny(1.0) nohead Is 2
ternx(0,1.0),terny(1.0) to ternx(1.0,0),tery(0) nohead Is 2

ternx(c1,0),termy(0) to temx(c1,1—c1),temy(1-c1) nohead Is 1
ternx(0,c1),terny(c1) to ternx(1—l,c1),temy(c1) nohead Is |
ternx(c1,0),temny(0) to ternx(0,c1).termy(c1) nohead Is 1

ternx(c2,0),terny(0) to temx(c2,1—2),terny(1—c2) nohead Is 1
ternx(0,c2),terny(c2) to ternx(1—2,c2),temy(c2) nohead Is 1
ternx(c2,0),temy(0) to ternx(0,c2),terny(c2) nohead Is 1

ternx(c3,0),tery(0) to temx(c3, 1—3),terny(1—3) nohead Is 1
ternx(0,c3),temy(c3) to ternx(1—c3,c3),temy(c3) nohead Is 1
ternx(c3.0).terny(0) to ternx(0,c3),terny(c3) nohead Is 1

temx(c4,0),lerny(0) to ternx(c4,1—c4),terny(1—c4) nohead Is 1
ternx(0,c4),lerny(c4) to termx(1—c4,c4),terny(c4) nohead Is 1
ternx(c4,0),terny(0) to ternx(0,c4),temy(c4) nohead Is 1

ternx(c5,0).temy(0) to ternx(c5,1—c5),temy(1—c5) nohead Is 1
ternx(0,¢5),1erny(c5) to ternx(1—c5,c5),terny(cS5) nohead 1s 1
ternx(c5,0).terny(0) to ternx(0,c5),terny(c5) nohead Is 1

ternx(c6,0),1erny(0) to ternx(c6,1—6),temy(1—c6) nohead Is 1
ternx(0,c6),lerny(c6) to ternx(1—6,c6),terny(c6) nohead Is 1
ternx(c6,0).temy(0) to ternx(0,c6),terny(c6) nohead 1s 1

ternx(c7,0),terny(0) to ternx(c7,1—7),temy(1—c7) nohead Is 1
ternx(0,c7),terny(c7) to ternx(1—c7,c7),terny(c7) nohead Is 1
ternx(c7,0),terny(0) to ternx(0,c7),terny(c7) nohead Is 1

ternx(c8,0),terny(0) to ternx(c8,1—8),terny(1—c8) nohead Is 1
ternx(0,c8),.temy(c8) to ternx(1—c8,c8),terny(c8) nohead Is 1
ternx(c8,0),terny(0) 1o ternx(0,c8),terny{c8) nohead 15 1

ternx(c9,0),1ermy(0) to ternx(c9,1—9).,temy(1—c9) nohead Is 1
ternx(0,¢9),terny(c9) to ternx(1-c9,c¢9),lerny(c9) nohead Is 1
ternx(c9,0),terny(0) to temx(0,c9),terny(c9) nohead Is 1
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#ticks

set label 4 "1.0" at ternx(—0.06,0.0},ierny(0.0)
set label 5 "0.0" at temx(0.0,—0.04),temyv(-0.04)
set label 6 "0.0" at ternx(1.02,0.0),terny(0.0)

set label 7 "0.9" at ternx(—0.06,c1),temy(c1)
set label 8 "0.1" at ternx(c 1,-0.04),terny(—0.04)
set label 9 "0.1" at ternx(1—c1+0.02,c 1), temy(c1)

sel label 10 "0.8" at ternx(—0.06,¢2),temyv(c2)
set label 11 "0.2" at temx(c2,—0.04),ternv(-0.04)
set label 12 "0.2" at ternx(1-<2+0.02,c2).terny(c2)

set label 13 "0.7" at ternx(—0.06,¢3),temvic3)
set label 14 "0.3" at ternx(c3,—0.04),ternv(—0.04)
set label 15 "0.3" at ternx(1-c3+0.02,c¢3).termy(c3)

set label 16 "0.6" at ternx(—0.06,c4),terny(c4)
set label 17 "0.4" at ternx(c4,—0.04),terny(—0.04)
set label 18 "0.4" at ternx(1—c4+0.02,c4).temy(c4)

set label 19 "0.5" at ternx(—0.06,c5),temvicS)
set label 20 "0.5" at ternx(c5.—0.04),terny(—0.04)
set label 21 "0.5" at temx(1—5+0.02,c5).temy(c5)

set label 22 "0.4" at temnx(—0.06,¢6),lcmyvico)
sel label 23 "0.6" at ternx(c6,—0.04),temny(-0.04)
set label 24 "0.6" at ternx(1-¢6+0.02,¢6).1emy(c6)

set label 25 "0.3" at ternx(—0.06,¢7),temmvic7)
set label 26 "0.7" at ternx(c7,—0.04),terny1—-0.04)
set label 27 "0.7" at ternx(1—¢7+0.02,c7).temy(c7)

set label 28 "0.2" at temx(—0.06,c8),termy(c8)
set label 29 "0.8" at ternx(c8,—0.04),temyv(-0.04)
set label 30 "0.8" at ternx(1—8+0.02,¢8).temy(c8)

set label 31 "0.1" at ternx(—0.06,c9),temy(c9)
set label 32 "0.9" at ternx(c9,—0.04),temnv(—0.04)
set label 33 "0.9" at termnx(1—9+0.02,c9).termy(c9)

set label 34 "0.0" at ternx(—0.06,1.0),temny(1.0)
set label 35 "1.0" at temx(1.0,—0.04),lemyv(—0.04)
set label 36 "1.0" at ternx(0.02,1.0),terny( 1.0)

# User—defined area

# Titles

set title "Co—Al-Cr\nT=1473K"

set label 1 "Co" at ternx(—0.06,-0.06),1ermy(-0.06)
set label 37 "X" at 0.5,-0.1

set label 38 "Al" at 0.52,-0.12

set label 2 "Al" at ternx(1.08,-0.06),temv(-0.06)
set label 39 "X" at 0.9,0.5
set label 40 "Cr" at 0.92,0.48

set label 3 "Cr" at temnx(—0.02.1.06),temy(1.06) center
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set label 41 "X" at 0.1,0.5
set label 42 "Co" at 0.12,0.48

#B2—-A2
plot *CoCrAlixt’ using (temx($3,$2)):(terny($2)) w 1 1s 2
replot *CoCrAltxt’ using (termx($6,%$5)):(temy($5)) wlls 2

set output *CoCrAl1200C.ps’

#

set terminal postscript color solid 12
replot

set output
set terminal x11

# End of file

O resultado dessa sé€rie de comandos € a figura B.2 abaixo (o diagrama obtido é o resultado

dos pontos fornecidos no arquivo 'CoCrAl.txt’).

Co-ACr
T=1473K

Figura B.2: Diagrama de fases terndrio (exemplo)

Para esse grifico poder ser utilizado no processador de texto em que foi redigido o presente
trabalho (StarOffice 5.1) ele teve que ser convertido para o formato GIF. Para tanto, foi feito uso
do programa convert (convert nome.ps nome.gif), para transforméd—lo. A seguir, o programa Gimp
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foi usado para as demais conversdes necessdrias, como por exemplo, uma rotagido de 90 graus para
exibi—lo na posi¢do adequada.

Como ¢é possivel perceber da andlise da figura B.2, a resolugdo desse grifico ndo é das
melthores. Para melhorar a resolu¢do, nos demais grificos do presente trabalho foi utilizado o
comando ser size 5 dentro do GNUPLOT, ou seja, ampliamos todas as figuras cinco vezes.
Conforme pode ser visto nos demais gréificos do presente trabalho, a resolugio torna—se bem
melhor.
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O grifico C.1 representa uma relagdo qualquer entre duas grandezas, obtida
experimentalmente ou calculada por um algoritmo qualquer. Por algum motivo, os dados estdo
bastante dispersos. Mesmo assim, percebemos uma clara linha de tendéncia pela qual esses pontos
podem ser ajustados por um método de regressdo, entre eles o método dos minimos quadrados.

Para um ajuste por uma curva, € necessirio que a fungio através da qual se queira ajustar os
dados seja conhecida, ou que pelo menos se tenha uma idéia razodvel do seu formato. Por exemplo,
para os dados da figura C.1, um ajuste com uma fungdo do tipo y=a+bx ndo é satisfatério. Da
mesma forma, um ajuste através de uma equagdo do segundo grau ndo € suficiente, porque a curva
apresenta um ponto de maximo e um de minimo. Portanto, devemos realizar o ajuste com alguma
fungdo mais elaborada. Se ndo tivermos algumas indicag¢des tedricas, ou pelo menos baseadas na
experiéncia, do formato dessa fungdo, temos um problema. A opgio de obter uma curva ajustada
por splines cubicos (as curvas do Excel passando por todos os pontos do gréifico utilizam esse
método) também ¢ impraticdvel, jd que o que desejamos € um ajuste suave, € ndo uma curva que

ligue necessariamente todos 0s pontos.

Y A

xy

Figura C.1 Exemplo de dados experimentais dispersos
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Para tentar resolver essa dificuldade, introduzimos aqui um método de suavizagio de curvas,
que foi utilizado no presente trabalho para a suavizacdo de algumas regides dos diagramas terndrios
do capitulo 6. Esse método foi desenvolvido inteiramente pelo autor desse trabalho, apesar de ndo
ser inédito. De fato, ele pode ser encontrado em livros a respeito de tratamento de imagens ou em
alguns poucos livros de cdlculo numérico.

O método se baseia no seguinte algoritmo: cada ponto € substituido pela média ponderada
de si préprio e dos dois pontos adjacentes. Para facilitar a compreensdo, pode—se observar a figura
C.2.

i+l

>

Figura C.2. Principio do método de suaviza¢do de curvas

Os pontos P, , P, e P,

i+

, sdo trés pontos consecutivos, pertencentes ao conjuntos de
dados que se quer suavizar. As coordenadas desses pontos sdo {(xj,y 1)} , com

j={i—1, i, i+1} , conforme indicado na figura C.2. O ponto P; ¢ o ponto em consideragio

para o ajuste. Ele € obtido da seguinte forma: primeiramente, calculamos as coordenadas do ponto

P, , que pertence a reta que passa pelos pontos P, e P, . e tem a mesma abcissa que o

ponto P, ; a seguir, calculamos as coordenadas do ponto P] , situado no ponto médio do

segmento P, I—". . Desse modo, o ponto  P; também apresenta a mesma abcissa que o ponto P,
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Vamos agora obter uma expressio matemdtica para as coordenadas do ponto P7 . O

método € o seguinte: calculamos inicialmente as coordenadas do ponto P, , e entdo calculamos o

ponto P! pela média com as coordenadas do ponto P, . Como as abcissas sdo sempre as

mesmas, podemos nos concentrar apenas nas ordenadas desses pontos.

Ospontos P, ,, P, e P, pertencem i mesma reta; portanto, podemos escrever:
Vi~ Yi- YiYiy
+ 1 — _l (C.l)
i Fin Xi X

Usando o fato de que X,=x, eisolando ¥, ,chegamos a ordenada do ponto P, :

Y=yt “;x-i:"xi;.l(yiﬂ—yi—l) (C.2)

yp =~ (C.3)

Substituindo o valor de ¥, da equagdo C.2 na equagdo C.3 e rearranjando:

m yi—l(xi+l_xi) + yi(xi+l—xi—l) + yi+l(xi—xi—l)

o= (C.4)

Para simplificar a expressdo acima, podemos definir a varidvel A(:) tal que:

A(x") = X—X,_, (C.5)

Além disso, se observarmos que

—x)+(x—x_ ) = AV + AW (C.6)
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a expressio C.4 torna—se, depois de mais alguns ajustes:

. A0y, ) + ATy, ) <
" 2(A" 04+ Al '

Finalmente, definindo as varidveis X (y') e X g)x tais que:

W=y +y,, (C.8)

Z(i+l) _ A(;+I)+A(;) , (C-g)

Ax

podemos rescrever a equagdo C.4, chegando finalmente a férmula para a suavizagio:

A(i)z(“'l) + A(i+l)Z(i)
Yi T - 2Z(in) ' (C.10)
Ax

Essa expressdo ¢ vdlida para 2<i<n—1 , onde n € o nimero total de pontos a serem

suavizados. Para os pontos extremos, com =1 ¢ i=pn , temos que adotar um procedimento
alternativo. Existem duas opgoes:

a) fixar as coordenadas desses pontos extremos. Nessa caso, devemos adotar
y’;‘:yl € ynm:yn 5
b) encontrar a reta de minimos quadrados y’""(x‘.) relativa aos dados e adotar para

0s pontos extremos os valores y| = y™(x) e y7 = y™(x) , fixando—os.

No presente trabalho, a opgio a) foi utilizada.

Para exemplificar o uso da expressdo C.10, podemos utilizd—la para suavizar uma curva
usando uma planilha, como a do Excel. A tabela C.1 mostra um esbogo de uma planilha que pode

ser usada para esse objetivo.

Departamento de Engenharia Metalurgica e de Materiais Trabalho de Formatura 2000



Apéndice C: Suvavizagio de Curvas C.5

Tabela C.1
Exemplo de uma planilha para a suavizagio de curvas
Dados de entrada Variaveis auxiliares Dados suavizados
i X Yi A(;) > (v') X (;)x x; yr
1 X1 y: - - - =X =Yy,
2 X2 y2 = xz—.\’l = y2+yl - =X2 =<eq. C.10>
3 X ¥3 = X,—X, = y,+y, = A(:)-I-A(;) =x; =<eq.C.10>
_ _ _ _ (n—2) (n—3) _ _
n=2| Xz Yz |= X, 7k o= Y oty . o= AT U+HAY =X,z =<eq.C.10>
n—1| X Yoot |= X _ =X, =Yy _ty . = A(:_')+A(;_2) =x,.; =<eq.C.10>
n Xn Yn = xn_xn—l = yn+yn—l = A(:)+A():_l) =Xn =y

Para ilustrar o método, vamos aplici—lo para os dados da figura C.1. O resultado est4

mostrado na figura C.3.
YA

R L

- Al )

Figura C.3 Suavizacdo dos dados da figura C.1

A escala dos gréficos das figuras C.1 e C.3 € a mesma. Desse modo, podemos perceber que

o método resultou em uma suavizagio considerdvel, apesar de ainda ndo ser satisfat6ria, pelo
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menos nessa escala. Ressaltamos que o método, a partir desse ponto, pode se tornar iterativo, com

os valores de y:" substituindo os de Yy, e repetindo o procedimento até que a suavizagdo torne—
se aceitdvel. Para isso, o método da planilha descrito acima ndo é conveniente; a melhor opgio é
utilizar um algoritmo que permita as iteragdes. O Visual Basic for Applications (VBA) € adequado
se for preferivel continuar trabalhando com a planilha, através do uso de macros; caso contrdrio,

deve—se usar alguma outra linguagem.

YA

xy

Figura C.4 Dados suavizados utilizando o algoritmo iterativo

No presente trabalho, néo foi necessdrio o uso de mais de uma iteragdo. Entretanto, apenas
como exemplo, isso foi feito para os dados desse apéndice. O resultado estd indicado na figura C.4.
Foram necessérias algumas dezenas de iteragdes para se atingir essa suavizagio; poderia—se atingir
uma suaviza¢iio melhor com mais algumas iteragdes. Entretanto, 3 medida em que o nimero de
iteragOes aumenta, a suavizagio tende A curva mais suave possivel, ou seja, uma linha reta. No caso
(a), utilizado nesse apéndice e citado anteriormente, a curva tende para a reta ligando os pontos
extremos; no caso (b), a suavizagdo reproduz a reta de minimos quadrados. Logo, deve—se tomar

cuidado com a suavizagdo excessiva, que pode descaracterizar os dados de partida.
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Um caso particular da expressdo C.10 € quando os pontos a serem suavizados estiverem

igualmente espagados no eixo x, ou seja, Ax=cte . Nesse caso, a expressio C10 simplifica—se

bastante, apés ser convenientemente rearranjada:

m_yi+l+2yi+yi—l
Y 4

(C.11)

Salientamos que, no presente trabalho, a equagio utilizada foi de fato a equagdio C.10, ou
seja, a equagdo para o caso geral, no qual os pontos ndo estdo espalhados uniformemente pelo eixo
das abcissas.
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Cédigo do programa CVM usado nos cdlculos

D.2

c'.'t'lt-t’t.ttQ.t-i'.ttt'-'t'.ilt.l".'.'t’ﬁ'.tli'."*.tt'.tttttlc

program cvml7bf2

C'lt'tttiltt!'ltt'ttt't.llt.’ntt""-Qt't'.'t.tttltn"'tl".'tit'nc

aoonAnNaAanNOonaNannoANAnn

created by C. G. Scheen (7 August 1998)
based on the program cvml7bf (C. G. Schoen)
first compiled at zirconio.pmt.usp.br
{Pentium X2 Linux workstation)

with fort?? compiler

Compiled in 27th October 1999 at zirconio.pmt.usp.br
with the newer g77 {egcs) gnu FORTRAN compiler

last modified by C. G. Schoen (27th October 1999}

Substituted obsolete real*8 and integer*4
types by real(kind=2) and 1nteger {ki1nd=-2}

P Y Y T L s e 2R S R R S R R R AR AL bbbl bl o

CVM calculations for systems up to 17 species {either spin
states or alloy components) in the tetrahedron approximation
for the FCC and BCC lattices.

Natural iteration minimization

Constrained equilibria (not yet 1mplemented)

True chemical potentials

APB energy calculation

P e 2 22 R R R A S T R A R R AR S A il b o

Parameter {NN=17)

c--.tt":...'--'-.-:.-.-...a.--.-.o--.t-..a...--:.'-'.g-...----.'.c

C

Declarations

c.'!".ﬁt""'ﬂ.t't"'tltl'.‘.-t0.t".'.t"t'.'.'.'t"ﬁ"'t'l'tt"c

no

on

logical*2 useclap,useread, state_f,constrained

integer tkind=2) i, 3j,k.l,m
integer (kind=2) 12

integer (kind=2} j2,k2,12
integer {kind=2) Nel, Nmag,N
integer (kind=2) nspin,ncomp
integer (kind=2) Jph, Iph
integer (kind=2) elmt

integer tkind=2) ibryf,iversiecn
integer {kind=2) ibry,1count
integer (kind=2) ifp,ifn,inp
integer (kind=2} nrec

1nteger (kind=2) DimSys

integer (kind=2} num_c,c_comp
integer (kand=2) Iphase

integer {kind=2) nph

integer {kind=2) deg_f
integer{kind=2) itr,1trD,2tc0

dimension nspin{NN),c_comp(NN-1}
dimension nph{2)
daimension 1tr(2)

real tkind=2) epsb, epcb, epxb
real (kand=2) epsf,epct
real(kind=2) ref_stl,ref_stJ
real {kind=2) CP,CPX1,CPX2,C?1,CP2
real {kind=2) mju,acr
real (kind=2) g, spin
real {kind=2} r_CP, delCPX, delC?
real {kand=2) rotCP
real (kind=2) r_CP_old
real (kind=2) TK,RTK,delTK
real (kand=2) f1,dfcp,flp,fin
real {kind=2) dGPp,dGPn
real {kind=2) ZIp,20,2D
real (kind=2} xal, xbt, xgm, xdt
real {kind=2} c_al,c_bt,c_gm,c_dt
real {kind=2) mag,m_al,m_bt,a_gzm,m_dt
real{kind=2} s1
real (kind=2) s7,sk,sl
real {(kind=2) constr
real {kind=2) GP,GPD, GPO, dGP
real (kind=2) Fgy,FgyD, Fgy0
real{kind=2} Etpy,EtpyD, EtpyO
real (kind=-2) Egy,EgyD,Bgy0
real {kind-=2) Gref,echr
real (kand=2} GPref,PCref
realtkind=2) ecp
realikind=2) pl
real (kind=2) distance
real(kind=2} unit_vector
real{kxind=2) ortho_vector
real{kind=2) k_B,m_B
real (kind=2) DE_apb, s_apb
real (kind=2} pABGD
real{kind=2) pABG, pABD, pAGD, pBGD
real{kind=2) pAB, pAG, pAD, pBG, pBD, pGD
real (kind=2) pA,pB, pG, pD
real (kind=2) partl.pltt2,patt3,part4,part5,parts

dimension epsb (NN, NN, NN, NK} , epcb (NN, NN, NN, NN}
dimension epxb (NN, NN, NN, NN)
dimension epsf (NN, NN, NN, BN) , epcf (NN, NN, NN, NN)
dimension ref_stI (NN, 8),ref_stJ{NN,8)
dimension CP {(NN),CPX1 (NN}, CPX2(NN),CP1(NN),CPZ(NN)
dimension mju{NN), acr (NN}
dimension g (NN),constr(NN-1)
dimension spin{4)
dimension r_CP {NN)
dimension ZO({NN,NN, NN, NN), 2D (3N, NN, NN, NN)
dimension Zp(2, NN, NN, NN, NN)
dimension GP(2),Fgy(2},Etpy(2),Egy{2),mag(2)
dimension xal (2, NN), xbt (2, NN}, xgm {2, NN}, xdt (2, NN)
dimension m_al (2, NN}, m_bt (2, E%¥},m_gm{2, NN),m_dt (2, NN}
dimension c_al {2, NN}, c_bt (2,3}, c_gmi2, NN),c_dt (2, NN}
dimension Gref {2,NN),PCref (2,NN)}, echr (NN, NN, NN, NN)
dimension pl{2,NN)
dimens:on ecp (NN, NN, NN, NN)
dimension unit_vector (NN}
dimension ortho_vector (NN)
dimension delCPX(NN), delCP (NN}
dimension DE_apb{2,2}),s_apbi2.2)
dimension pABGD (NN, NN, NN, NN}
dimension pABG(NN,NN,HN),pABB(NN,NN,NN)
dimension pAGD (NN, NN, NN}, pBGD (RN, NN, NN}
dimension PAB{NN,NN), pAG (NN, X¥), pAD (NN, NN)
dimension pBG (NN, NN}, pBD (NK, M) , pGD (NN, NN)
dimension pA{NN), pB(NN) ,pG (¥}, pD (NK)

character*l use_abs_G,print__emm

character*2 component,Mode

character*3 structJ,struct],.BCC,FCC, struct
character*15 Filenamel,Filename2,F1l=name3
character*l5 Filenamed

character*2( Sysname

dimension component (NN)
dimension struct (2)

Common/Csys/Nel, Nmag, ncomp, nspin, component
Common/CBCC/epsb, epch, epxb
Common/CFCC/epsf, epcf

Comnon/Cpot /ecp, TK, RTK

Common/Cord/Z0

Common/Cdis/ZD

Data icountf,dflf,dGP£/10000,1.0e-4,0.01/

(]

Main

-- ----C

(2]

Physical constants:
k_B: Boltzmann constant (J/mol.K]
m_B: Bohr magneton [J/mol.T]

anNnnnn ana

Cc—--

k_B=8.3145d+0
m_B=5.585d+0

BCC~’ BCC’
FCcC=’FCC’

---- --c
Opening input and output files
Reading and writing file headers

- c

10

20

N
wn

Open (Unit=5, f1le=’cvml7bf2.1np’, status='old’, form=’ formatted’)

Format (4X, 12, €X, 12, 6X,A20)
Read({5,10) Nel, Nmag, Sysname

Format (Al5)

Read(5,20) Filenamel
Read (5,20} Filename2
Read(5,20) Filename3
Read{5,20) Filename4

Open{Unit=10,F1le=Filename3, Status=’' New’, form=’Formatted’}
Open({Unit=12,F1le=Filenamel, Status=’New’, form=‘Pormatted’}
Open (Unit=14,P1le=Filename2, Status='New’, form=’ Formatted’)
Open(Unit=15, File=F1ilename4, Status='New’, forn=/Formatted’)

Format {1X,’ $88###¢4 cvml?bf2 calculation report $44é440°/)
Write(10,25)

- c

acaonacnaoanaonnNn

Fundamental definitions:

Sysname: A label for the system

Nel: Nunber of species (spin states and alloy components'
Nmag: Number of magnetic components

nspin: Number of spin states for each magnetic componen.
nspin(i)= 2*(s{1)}+1

N: Number of non-magnetic alloy components

ncomp: Number of alloy components

components: The labels for the components

StructI,StructJ:Lattice types (BCC or FCC)
Iph,Jph:Phase labels

40
45

50

ann

60

70

80
90

Format (1X,A20,2X,°,,"Nel=*,12,2X,’,’,' Nmag=",12,"',")
Write (12, 30} Sysname,Nel,Nmag
Write(l4,30) Sysname,Nel, Nmag
Write(l5,30) Sysname,Nel, Nmag

do 1=1,Nel
nspan{1)=1
g(i)=0.0
enddo

Format (1712}
Format (8B10.4)

if (Nmag.ne.0) then
Read{5,40) (nspin{i),i=},Nmag)
Read(5,45) (g()), )=1,Nmaqg)}
N=Nel
do i=1,Nmag
N=N-nspin{i}
enddo

Format ({1X,’ Inconsistency: Nel<sum(nspin{i))’}
if (N.1t.0) then

write (10, 50)

goto 5000
endif

ncomp=N+Nmag

do i-1, ncomp
write{*,40) nspin({i)
enddo

Format (17 (A2, 1X))
Read(5,60) (component{i),i=1,ncomp)}

Format (1X, " System: *,A20)
Write(10,70) sysname

Format (1X, ' component (,12,”}= ‘,A2)
Format (1X, ‘ component (’ ,I2,°)= *,A2,’:(25+1)= *,12)
da i=1,ncomp
1f (i.le.Nmaqg) then
Write(10,90) i,component({i),nspin(i)
else
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Write(l0, 80)
endif
endda

1, component (1)

DimSys=Nel**4

95 Format {1X, ‘ giromagnetic ratio:’}
96 Format{1X,’g(’,A2,")= ’,F6.4)

if (Nmag.gt.0) then
Write(10,95)
do i=1,Nmag

Write (10, 96)

enddo
endif

component {1),g{i)

100 Format(A3,I2/A3,I12)
Read(5, 100) structJ,Jph,structl, Iph
if (f{structJ.eq.’bce’}.or.{structJ.eq.’Bcc’)) then
structJ~BCC
endif
1f ((structJ.eq.’fcc’}.or.(structJ.eq.’Fcc’))
structJ=FCC
endif
if ((structl.eq.’bcc’).or.(structl.eq.’Bcc’})
struct1=BCC
endaf
if {(structl.eq.’fcc’).or.(structl.eq.’Fcec’))
struct I=FCC
endif -

then

then

then

nph(l}=Jph
struct (1} =structJ

nph(2)=Iph

struct (2)=structl
110 Format({lX,’Phasel: structure’,lX,A3,12,4X,”,’,
. ‘Phase2: structure’,lX,A3,I12)

Write{10,110}) Structd,Jph,Structl, Iph
Write{12,110} StructJ,Jph,Structl,Iph
Write(l4,110) StructJ,Jph,Structl, Iph
state_f=(Iph.eq.Jph).and. (structl.eq.structJ)

120 Format(28X,Al)

Read(5,120) prant_enm

1f (print_enm.eq.’y’) then
print_enm="Y'
endif

130 Format {34X,Al)

Read(5,130) use_abs_G

[ S S
(&) use_abs_G= 'Y’ -> uses the absolute reference states.

c The procedure is automatic in twe phase equilibria when

c the two phases have different crystal structures

c ——— -

1f (use_abs_G.eqg.’y’}) then
use_abs_G='Y’
end1f

Commmm—— -
C Reading the eigenenergy matrix
Commmm——— _—

1f (structl.eqg.structJ} then
1f {structJ.eq.BCC) then
Call energyb{print_enm)
else
Call energyf (print_enm}
endaf
1f (use_abs_G.eq.’Y") then
call refgp(structl,ref_stIl}
1f (Iph.ne.Jph} then
do 1=1, ncomp
do )~1,8
ref_stJ(1,))=ref_stI(i, ;)
enddo
enddo
endaf
endif
else
call
Call
Call
Call
endif

energyb(print_ens)
energyf (print_enn)
refgp(Structl, ref_stl)
refgp(StructJ,ref_stJ)

Reading initial set of parameters

CPX11{i) :Chemical potential of component 1
at the first point {(correspondent to phase 1)

CPX2(i) :Chemical potent:al of component i
at the second point (correspondent to phase 2)

H_extl;External magnetic field at the first point
H_ext2:External magnetic field at the secend poant

CP1{j) :Generalized potential field of specie )
{component—elmt, spin number=spin) at the first point

CP2{j):idem at the second point

noooanNnonoNnnNnNnoaoannaon

140 Format (10X,B13.7,11X,B13.7)
150 Format(lX, CPX1(’,A2,’)~ *,E13.7,1X, CPX2{',A2,*)= ’,E13.7)

155 Format (’Reading chemical potentials’)

CPX1 (ncomp)~0.0

nnanannnno onnn

non

160
170

*

CPX2 {ncomp)=0.0

if (ncomp.ge.2)} then
do i=1, (ncomp-1)
Write(*,15%)
Read{5,140) CPX1(i),CPX2(1)
Write (10,150} component{i),CPX1(i),
component (i) ,CPX21{1)
CPX1 {ncomp) ~CPX1 (ncomp) -CPX1 (1)
CPX2 (nconmp) =CPX2 (ncomp) ~CPX2{i}
enddo
Write(10,150) component (ncomp).lZX! (ncomp),
component {nconp), CPX2 {(ncomy}
endrf

Format (2X,’H_extl= ’,E12.7,3X,’H_ext2= *,E12.7)
Format {‘ Reading magnetic fields’)

if (Nmag.gt.0) then
Write(*,170)
Read(5,140) H_extl,H_ext2
Write(10,160) H_extl,H_ext2
endif

distance = 0.0

do 1=1,ncomp-1
distance = distance + (CPX2{i)-CPXl(1})**2
enddo

distance ~ distance**(0.5)

do 1i=1,ncomp
1f (distance.ne.(0.0)) then
unit_vector(i)=(CPX2 (1) -CPX1l({1))/distance
else
unit_vector(i)=0.0e+0
endif
enddo

————— - m—---C
orthegonal unit vector to r_CP
1mplemeted only for binary and ternary systems

1f (ncomp.eq.2) then
ortho_vector (2) =unit_vector(2)
ortho_vector (1) =~unit_vector(l)
else
1f {ncomp.eq.3) then
ortho_vector {2)~unit_vector (3}
ortho_vector (3)=-unit_vectar{2)
ortho_vector(l)= -{ortho_vector{2)+ortho_vector(3))
enda f
end:if

de i-1,Nel
1f (Nmag.gt.0) then
call indexing(i,elmt,spin(l}))
CP1(1}=(CPXl{elmt)/nspin(elmt))
f(g(elmt)'m_B‘spln(l)'H_extl
*(nspan{elmnt)-1.0)/(2.0*k_B)}
CP2(1)=(CPX2(elmt) /nspinialmt))
+{g(elnt)*m_B*spin(l) *H_ext2
*(nspinielmt}-1.0)/(2.0*k_B))
else
CP1(1)=CPX1 (1)
CP2{1})=CPX2{(1}
endif
£ CP{1)=CP2(1)-CP1 (1)
CP{i)=CP1(1)
enddo

’Thermal history’ of the calculation:

TRK= temperature in K

delCP = translation of the chemical potential vectors
delTK = temperature change between steps

dfCP=~ 1nitial value of dfl

180
185

190

210
215

Format (3F10.4)
Format (F10.4)

Write(*,190)
Read(5,180) TK,delTK,dfCP

de)CPX (ncomp) =0.04+0
do i=l,ncomp-1

Read (5, 185) delCPX({i)

delCPX {ncomp) =delCPX (ncomp) ~delCPX{i)
enddo

if {Nmag.gt.0) then
elmt=0
do 1=l,nconp
do j=l,nspinti)
elmt=elmt+1
delCP (elmt)=delCPX (i) /nspin{i}
enddo
enddo
else
do i=1l,Nel
delCP(i)=delCPX{i)
enddo
endif

Format (’ Reading thermal history’)

¥Write(10,210) TK,delTK,dfCP
de i=1,ncomp

Write(10,215) component{i),delCPX (1}
enddo

Format (/1X,*TK= ’,F8.2,1X, delTK= *,Ell.4, 1X,/dfcp= ‘,E1l.4)
Format {1X,’delCP(*,A2,’)= ’,Ell.4)

Control variables:



Cédigo do programa CVM usado nos cdlculos

D.4

ibryf= number phase boundary points/one-phase equilibria

iversion~ version of the search algorithm for the
phase boudary points

useclap~ uses clapeyron relaticn to get a phase
boundary point in a different temperature

useread- read the initial configuration from file
bint.inp

constrained= calculates a constrained equilibrium
{for example, an isopleth)

noaNaNONAOOnO0nNonN

220 Format(’Reading contrel variables’)

Write(*, 220}
230 Format(I4,12,3L2)

Read(5,230) ibryf,xverslon,useclap,useread,consttained

240 Format(1X,’ibryf= ’,14,1X,’ 1version= ’,12,1X,
‘useclap= ‘, L2, 1X, useread=- ’,L2,1X,
* ’constrained— ’,L2)

Write(10,240) thyf.iver51cn.useclap,useread,constra1ned

245 Format{lX, Sorry, this choice does not make sense’)
246 Format{lX,’set constrained = f in the control line’}

1f {constrained.and. {ncomp.eq-1}) then
Write(10,245)
Write(10,246)
Writel*,245)
Write(*, 246)
goto 5000
endif

247 Format(lX,’Number of degrees of freedon is greater than zero’)

248 Format({lX,’set constrained = t 1n the control line’}

1f {.not.constrained.and. (ncemp.gt.3)) then
Write(10,247)
Write(10,248)
Write(*,247)
Write(*,248)
Goto 5000
endif

Reading initial configqurat:icns:

1f useread is true the configurations are read from
a random access file (bint..np), if not, they are
calculated as the product of the pcint probabilities
read in unit 10

oonNnNNAnNnaan

250 Format {4F7.5)
255 Format{lX,’inconsistency: Point probabilaty <= 0')
256 Format(1X,”Reading initial ccofiqurations’)

Write(*,256)

1f (useread) then
Open (Unit=8,File="bint.1np’,access='direct’,
* recl=DimSys, status=*old’, form=‘unformatted’)
1count=icount+l
nrec=0
do i=1,Nel
do j=1,Nel
do k=1, Nel
do 1l=1,Nel
nrec-nrec+l
Read (B, rec=nrec) Zp(l,1,3,k,1},
. Zpi2,1,;.x,1)
enddo
enddo
enddo
enddo
Close{Unit=~8)
else
xal(l,Nel}~1.000
xbt (1,Nel)=-1.000
xgmi{l,Nel)=-1.000
xdt {1, Nel)~1.000
xal{2,Nel)=1.000
xbt {2, Nel}=1.000
xgm{2,Nel)=1.000
xdt (2, Nel)=1.000
do i=1,Nel-1
Read(S5,250) xal(l,i),xbt(l,i),
- xgm{l,1),xdt{1l,1)
xal{l,Nel}=xal(l,Nel)-xal(l, 1}
xbt {1, Nel)=xbt {1,Nel)-xbt (1,1)
xgm{l, Nel)=xgm(l,Nel)-xgm(l,1}
xdt (1, Nel)=xdt (1, Nel)-xdt (1,1)

enddo
1f ((xal(l,Nel).le.(0.0})).cr.
. {xbt {1,Nel) .le.(0.0)).0or.
. {xgm(1l,Nel) .le.(0.0)).or.
. {xdt (1,Nel) .1le.{0.0))} then
Write(10,255)
Write(*,255)
Goto 5000
endif

if (.not.state_f) then
do i=1,Nel-1
Read(5,250) xal(2,1x),xbt(2,1).
* xgm(2,1),xdt (2,1}
xal (2, Nel)~xal {2, Nel)-xal(2,1)
xbt (2, Nel}=xbt (2, Nel) -xbt (2,1)
xgu(2, Nel) =xgm{2, Nel)-xgm(2,1)
xdt {2, Nel)=xdt (2, Nel) ~xdc {2,121}

enddo
1f ((xal{2,Nel).le.(0.0})).or.
. {xbt (2,Nel).le.10.0)) .0or.
. {xqu(2,Nel) .1le. (0.0)) .or.
. ixdt (2, Nel) .le. (0.0))) then

Write(10, 255)

Write(*,255)

Goto 5000
endif

endif
do i=l,Nel
do j=1,Nel
do k=1, Nel
da 1=}, Nel
Zpél,i,j,k,1)=xal{l,1) *xbt{l, j)
* *xgmi{l, k) *xdt {1,1)
if (state_f) then
Zp(2,1i, 3.k, 1)=2Zp(l,i,3,k,1)
else
Zp(2,i, 3, k, Ly=xalt2,i) *xbt {2, j)
* *xgmi2, k) *xdt(2,1)
endif
enddo
enddo
enddo
enddo
endif

Close (Unit=5)

259 Format(/lX,’Phase- ’,A3,12)
261 PFormati{lX,’xal{’,12,') = *,F6.4,1X,"xbt(’,12,’)~ ’,P6.4,1X,
* Txgm{’,I2,*)= * ,F6.4,1X, ' xdt (*,12,’)~ ' ,F6.4)

Write(10,259) structJ,Jph
do i=1,Nel
Write(10,261) i,xal{l,i),i,xbt(1,1),1i,xgm(l,1i),
. i,xdt (1, 1)
enddo

if (.not.state_f) then
Write{10,259) structl,Iph
da i=1, Nel
Write (10,261} 1i,xal(2,1),1,xbt(2,1),1i,xgm(2,1),
hd 1, xdt (2, 1)
enddo
endif

Constrained calculations:

Mode=’x’-> 1sopleth calculation

Mode=’m’ -> constant potential calculation

num_c= number of constraints

c_comp~ compound to which the constraint should be applied
constr= value of the constraint

nnonoaann

-=-C
deg_f = 0

1f{constrained) then
Open(Unit=5, f1le=’constr.inp’, status=‘old’,
* form=’ formatted’)
Read(5,270) Mode
Write(10,280) Mode
Read(5,290) num_c
1f {Nmag.ne.0) then
deg_f = ncomp~num_c-3
else
deg_f = ncomp-num_c-2
endif
Write(10,295) num_c
1f{num_c.ge.ncomp) then
Write(10,245)
Write(*, 245)
Goto 5000
endif
do i=1,num c
Read{5,310) c_comp(1),constr{i)
Write (10, 320) Mode, component {c_comp(i}),

- constr(i)
enddo
Close{Unit=5}

endif

270 Format {A2)

280 Format (lX,’Constrained calculation: Mode= ’,A2)

290 Pormat (I2)

295 Format(1X,’Number of constraints= ’,I12)

310 Format(I2,F6.4)

320 Format(lX,’contraint of ’,AZ,7(',A2,')’," = ’,F6.4)

e R R R AR R R R o

C Search Algorithm start

R e L]

260 Format{’Algorithm start’)
Write(*,260)

Initializing variables and counters

265 Format{/’iteration= ’,I14/’TK~ *,F11.2)
275 Format(’CP: ‘,17(B12.5,,))
276 Format(’‘dCP:’,17(E12.5,7,’))
277 Format('Tr: *,17(E12.5,”,'))

mjul{i} is the "true’ chemical potential of i

acr(i) is the activity of component i in the reference
state TK and StructJ

ananna

do i=1,NN
mju(i)~0.0d+0
acr(i)=0.0d+0
enddo

do ibry=1,ibryf

RTK~1.0d4+0/TK

Introduce here the actualization of the
reference state

anan

do i=l1,Nel
1f {(Nmag.gt.0) then
call indexing{i,elmt,spin(l))

CP1{i)={(CPX1{elmt)/nspin(elmt))
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+({glelmt)*m_B*spin{l) *H_extl
* (nspin{elmt)—~1.0)/{2.0*k_B)}
CP2(i)={CPX2 (elmt) /nspinl{elmt))
f(q(elmt)'n_B'!pln(l)'H_ext2
* (nspin(elmt)-1.0)/(2.0*k_B})
else
CP1{i)=CPX1 (1)
CP2Z (i) =CPX2 (i)
endif
r_CP{i)=CP2(i) -CP1l({1)
CP {i)~CP1 (i}
enddo

mag(1)=0.0
mag{2)~0.0

do i=1,Nel
xal{l,i)=0.0
xbt (1,1)=0.0
xgm(l,i)=0.0
xdt (1,i)=0.0
xal{2,i)=0.0
xbt. (2,1)=0.0
xgm(2,1}=0.0
xdt {2,1)=0.0
c_al{l,i)=0.0
c_al({2,i)=0.0
c_bt{l,i)=0.0
c_bt(2,i}=0.0
c_gmi{l,i)=0.0
c_gmi2,i)=0.0
c_dt({},i)=0.0
c_dt{2,i)=0.0
m_al{l,i)=0.0
m_al(2,i)=0.0
m_bt{l,i)=0.0
m_bt (2,i)=0.0
m_gm(l,i}=0.0
m_gm(2,i}=0.0
m_dt {1,i}=0.0
m_dt{2,i)=0.0
enddo

dGp = 1.0
£1 = 0.0
dfl = dfCP

initializing the flags for the search of :the phase boundary

1fp = 0 tiversion = ! (Kikuchi)
ifn = 0

inp = 0 tiversion = 2 {Colinet)
flp = 0.0

fln = Q.0

icount = 0

Write(*,265) ibry,TK
Write{*,277) (CP(1),1~=1,Nel)

do 2000 while ({(dGP.qt.dG@%).and. {icount.lt.icountf)}

icount=icount+l
do i=1,Nel
do j=1,Nel
do k=1, Nel
do 1=1,Nel
ecp(l,).k,;l-CP(1)0CP<;)vCP(k]ch(l)
epcb(1, ], k.1)= (-epsbi1, ), k,1)
+tecpfa, j,k,1}/24.Cd+0) *RTK
epcfii, j. k1)~ (—epsfli,),k,1)
+ecpii, j, kr1)/8.0d+0) *RTK
enddo
enddo
enddo
enddo

Realizing one equilibrium caliculatien

1f (.not.state_f) then
if {Jph.eq.1l} then
Iphase=Jph
do i~l,Nel
do j=1, Hel
do k=1, Nel
do 1l-1, Nel
ZDt1, 3, X, 1)=Zptl,.1, 3, k,1)
enddo
enddo
enddo
enddo
1f (structJ.eq.BCCY then
call DISBCC{1trD,GPD, FgyD.
BtpyD, BgyD)
else

if (structJ.eq.FCC) then
call DISPCC{itrD,GPD,FgyD,
EtpyD, EgyD)
endif
endif
itr(l)=~itrD
GP(1)=k_B*GPD
Fgy{(1)=k_B*FgyD
Etpy(l)=k_B*EtpyD
Egy (1}=k_B*EqyD
do i=1,Nel
do j=1,Nel
do k=1, Nel
do 1=1, XNel
Zptl, 1,3, k, 1)=20¢1, 3, k., 1}
enddo
enddo
enddo
enddo
alse
Iphase=Jph
do i=1,Nel
do j=1,Nel
do k=1, Nel
do 1=1,%el
2061, 3, k,1)=Zpil,1, 3, k., 1)

enddo
enddo

enddo
enddo
1f{structJ.eq.BCC) then

call ORDBCC({Iphase, itrO,GPO,Fgy0,

EtpyO, Egy0)

else

if {structJ.eq.FCC) then
call ORDFCC(Iphase, itrO,GPO,Fgy0,

* Etpy0, Egy0)

endif
endif
itr(l)=itrO
GP (1) =k_BE*GPO
Fgy{1}=~k_B*FgyQ
Etpy{1) =k_B*Etpy0
Egy (l)=k_B*EgyQ
do i=1,Nel
do j=1,Nel
do k=1, Nel
do 1=1,Nel
2p(l,i,3,ke1)=200i,3,k,1)
enddo
enddo
enddo
enddo

endif
endif
1f(Iph.eq.1l) then
Iphase=Iph
do i=1,Nel
do j=1,Nel
do k=1,Nel
do l=1,HNel
2043, 3.k, 1)=2pi2, 2, ), ke 1)
enddo
enddo
enddo
enddo
1f {structl.eq.BCC) then
call DISBCC(itrD,GPD,FgyD,
EtpyD, EgyD}
else
if{structl.eq.FCC) then
call DISFCCl{itrD,GPD,FgyD,

- EtpyD, EgyD)

endif
endif
itr{2)=itrD
GP (2) =x_B*GPD
Fgy (2)=k_B*FgyD
Etpy(2)=k_B*EtpyD
Bgy (2) =k_B*EqyD

do 1=1, Hel
do j=1,Nel
do k=1, Nel
do 1l=1,Nel
2pi2,1, 3.k, 1}=2D{4i, ), k,1)
if (state_f) then
Zpil, i, 3, k, 1)=2D(i, i, K, 1)
endif
enddo
enddo
enddo
enddo

1f(state_f) then
itr{l)=itr{2)
GP{1)=GP (2)
Fgy (1) =Fgy(2)

Btpy (1)~Btpy(2)
Eqy (1) =Egy (2}
endif
else
Iphase=Iph
do i=~l, Nel
do j=1,Nel
do k=1, Nel
do l=1, Nel
2002, 3, k, 1) =2p(2,4, 3, k, 1)
enddo
enddo
enddo
enddo

1f (Structl.eq.BCC) then
call ORDBCC{Iphase,1trO,GPO,Fgy0,
BtpyO, Egy0}

e
1f(Structl.eq.FCC) then
call ORDFCC(Iphase,1trO,GPO, FgyQ,
Etpy0, EgyO)

els

endif
endif
itr{2)=itr0
GP (2) =k_B*GPO
Fgy {2) =k_B*Fgy0
Etpy (2) =k_B*Btpyo
Egy{2) =k_B*Bgy0Q
do i~1,Nel
do j=1,Nel
de k=1, Nel
do 1-1,Nel
Zpt2,1,3,k, 1)=20(1, i, k,1)
if (state_f) then
Z2pil,i,3,k,1)=20(4, 3, k, 1)
endif
enddo
enddo
enddo
enddo

if{state_f) then
1tr{l)=itr{2)
GP {1) =GP (2)
Fgy(l)=Fgyi2)
Etpy(l)=Etpy(2)
Eqgy {1)=Egy (2)

endif

endif

Searching for the phase boundary in iteration ibry

dGP=-GP (2) -GP (1)
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2000

if(.not.state_f) then

1f({dGP.1t .0} .and. {1count.eq.1}) then
Write{10,311)
Write{*,311)
Goto 5000

endif

1f{icount.gt.1countf) then
Write{10,321)
Write(*,321)
Goto 5000

endarf

1f (abs (df1l) .1t.df1f) then
Write(10,330
goto 5000

endar

1f(1version.eq.l) then !Kikuchi
1f{dGP.1t.0} theno

fln=£f1
if{ifp.eq.l) then
dfl= (flp-£fln)*dGPn/ (dGPp-dGPn)
endif
£l = f1 - dfl
else
ifp=1
dGPp~dGP
flp=f1
1f(ifn.eq.1) =hen
dfl= (fl1p—£1n)*dGPp/{dGPp—dGPn}
endif
fl=f1+dfl
endif
else frwersion = 2 (Colinet)

1ffr1count.eq.2.acd.dGP.1t.0) then
inp = 1
endif

1f finp.eq.l) then
1f (dGP.1lt.0) then
fl=f1 - d4£2I
else
inp = 0
dfl = df1s2.0
£1 = f1 + =£1
endif
endif

+f (dGP.1t.0} then
fl = f1 - dfl
dfl = dfl/4.0
fl = f1 + dfl
else
1f {(inp.eq.l} then
dfl = df1/2.0
endif
£1 = £1 + dfl
endaf
endaf
do 1=1,Nel
CP{i}=CP(1}+(fl"z_CP{i))
enddo

endr f

enddo

Writet*,275) (CP{(1),1~1,Nel)

(2]

One iteration 13 ready
storing the cluster probabil:ties in file bintl.out

Open{Unit=8,File='bintl.cut’, access~'direct’,
recl=DimSys, status="=mknown’, form=’ unformatted’)
1count=icount+l
nrec=0
do i=1,Nel
do 3-1,Nel
do k=1,Nel
do l=1,Nel
nrec=nrectl
Write (8, recenrec) Zp{l,i,1.k,1),
Zpl2,1., 1.k, 1)
enddo
enddo
enddo
enddo
Close(Unit=8)

Calculating point probabilit:es and subl. magnetizations

do 1=1,Rel
do j=1,Nel
do k=1,Nel
do 1l=1, Nel

xal(l,1)=xal¢l,i)+Zp(l,i,j, k,1)

xal (2,1)=xal2,i)+Zp(2,i, 3, %k, 1)

xbt (1,i)=xbt €1,1)+2Zp(l, j,i, %, 1}

xbt (2,1)=xbt £2, i) +Zp(2, j,i, k. 1)

xgm(l,i)=xgmel,1)+Zpil, k,j,1i.,1)

xgm(z.x)'xqmtz.x)*zp(z X, 3,1,1)

xdt (1,1)=xdt §1,1)+Zp(1, 1, ), k, i)

xdt (2,1)=xdt €2,1)+2p{2,1, 3, k,1)

1f (Nmag.gt.C} then
call indexang{i,i2,si)
m_al{l,12)=m_al{l,i2)+(si*2p(l,i,j,k,1}}
m_ali2,12)-m_al(2,i2)+(si*Zp(2, 1
m_bt(l,12)=m_bt(l,iZ}+(s2*2pll, j, 1,
m_bt (2,12)=m_bt (2,12) +(si*2p{2, j, 1, k, 1))
n_gm{l,12)=m_gm(l,i2}+{si*Zpi{l, k,j,i,1)}
m_gmi2,12)=m_gm{2,i2) +(si*Zp{2,k, j,i,1)}
m_dt{l,i2)=m dt{l,i2)+(si*2p(l,1, i, k,i))
m_dt(2,i2)-m dt{2,i2)+{si*2p(2,1,],k, 1)}

noanNoonNOnNaNnoONNNan

else
12=1

endi £
c_al(l,i2)=c_al{l,i2)+2Zp(1,1i,3j,k,1)
c_al(2,i2}=c_al(2,i2)+tpt2,i,3j,k,1)
c bt(l,i2)=c_bt(1,i2)+2p(l,j,i,k, 1)
c bt {2,i2)=c_bt(2,i2) +Zp(2, j,i,k,1)
c_gu(l,i2)=c_gm(l, i2)+Zp(l.k, j,i,1)

— c_gnm{2,i2)=c_gm(2,i2)+Zp(2,k, j,1i,1)
c_dt{l,i2)=c_dt(1l,i2)+2p{l,1,j, k,1)
c_dt (2,i2)=c_dt (2,i2)+2p(2,1, j. k, 1)

enddo
enddo
enddo
enddo

do i=l,ncomp

pl(l,i)=(c_al(l,i)+c_bt{l,i)+c_gmi{l,i)+c_dt(l,i})/4.0
Pl(2,i)=(c_al(2,i)+c_bt(2,i)+c_gm{2,i)+c_dt(2,i}) /4.0

if (Nmag.gt.0) then

mag (1) =mag {1} +{(g{i) *(nspin{i}-1.0d+0}/2.0d+0)*

(m_al{l,i)+m_bt{l,i}+
m_gm(l,i)+m_dt(1l,i))/4.0)

mag{2)-mag{2)+((g (i) *{nspin(i)-1.0d4+0)/2.0d4+0)*

(m_al{2,i)+m_bt (2,1i)+
m_gm{2,i) +m_dr(2,i))/4.0)
endif
enddo

Calculating the APB surface tensions for
BCC-based superlattices

[+]

DE_apb(i, j): Energy change per atom caused by introducing an

APB of Burgers vector ‘i’ in the plane ’3j’ not allowing
chemical relaxation {(mechanical APB)

s_apb(i, j}:
lattice parameter of the disordered BCC crystal) of an
APB of Burgers vector ‘i’ in the plane ’j’

i = 1 => a0«<1,0,0>
i =2 => {a0/2)<1,1,1>

=1 => (0,0,1)
=2 => {0,1,-1)

surface tension (times a0**2, where a0 is the

1f{state_f.and. (StructJ.eq.BCC}) then

do i=1,Nel
do j-1,Nel
do k=1, Nel
do 1=1,Nel
PABGD (i, j, k, 1) =0.0d+0
enddo
PABG (1, j,k)}=0.0d+0
PABD (1, J,k)=0.0d+0
pAGD (1, j, k) =0.0d+0
pBGD (4, 7,k)=0.0d+0
enddo
PAB(i, 3)=0.0d+0
PAG (i, 3)=0.0d+0
PAD (i, j)=0.0d+0
PBGli, 3)=0.0d+0
pBD (i, j)=0.0d+0
pGD {1, j)=0.0d+0
enddo
pA{i}=0.0d4+0
pB(i)=0.0d+0
pG(i})=0.0d+0
pD{i})=0.0d+0
enddo

do i=1,Nel
do j=1,Nel
do k=1, Nal
do 1=1,Nel
if (Nmag.gt.0) then
call indexing{i,i2, si)
call indexing{),j2,8j)
call indexing(k, k2, sk)
call indexing({l,12,sl)
else
i2=i
j2=j
k2=k
12~1
endif
PABGD (12, j2,k2,12) =
pABGD (i2, §2,k2,12) +
Zpil, i 3.k, 1)
enddo
enddo
enddo
enddo

do i=1l,ncomp
do j=l.nc
do k=1, ncomp
do 1l=1,ncomp

PABG (i, J, k) =pABG (i, j, k) +pABGD (i, j, k, 1)

PABD (i, j, k) ~pABD (i, j, k) +pABGD (1, §,1, X}
PAGD (i, j, k) =pAGD (i, j, k) +pABGD (i, 1, j, k}
PBGD (i, j, k) =~pBGD (i, j, k) +pABGD (1,1, j, k)
pAB({i, })~pAB(i, j} +pABGD (i, j, k, 1)
pAG(i, ))~pAG (i, )} +pABGD (1, k, j, 1)
pAD({i, j)=pAD (i, j} +pABGD(1i,k,1, )

pPBG (i, j)=pBG (i, j) +pABGD (k, 1, §,1)

pBD (i, j)=pBD{i, j) +pABGD (k,1i,1, j)

pGD (i, j)=pGD (4, j) +pABGD {k, 1,1, })
PA{i)=pA (i) +pABGD {1, ), k. 1)
pB(i)=pB (i) +pABGD(j,i,k, 1)
pG(i)=pG(i) +pABGD (), k, i, 1)

pD (i) =pD (i) +pABGD{j, k, 1, i)

endda
enddo
enddo
enddo

deo i=1,2

do j=~1,2
DE_apb (i, j) =0.0d+0
s_apb (i, j)=0.0d4+0
do
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do i=l, ncomp
do j~1,ncomp

do k=1, ncomp
do l1=1,ncomp
partl=0.04+0
part2=0.0d+0
part3=0.0d+0
part4=0.0d+0
do m=1, ncomp
partl = partl +
(pABGD (i, ), k,m) *
{ (PABGD (i, ], 1, m) /pABD (1, j,m))
+(pAGD(i, 1, m) /pAD(1,m)}
+(pBGD{j,1,m) /pBD (), m))
+(pGD{1,m)/pD(m))))
part2 = part2 +
{pABGD {i, j,m, 1} *
{pABGD (i, j,m, k) /pABG (i, j.m) )
(pAGD (i,m, k) /pAG(1,m)}
lpm().m.k)/paclj.nl)
I1pGD {m k)/pGlmHH
(

+ -

part3 part3
pABGD(),m.l k) *
({pABGD {i,m, 1, k) /pBGD{m, 1,k})}
+{pABG{i,m, 1) /pBGim, 1}}
+(pABD (i, m, k) /pBD (m, k) }
+{DAB{i,m) /pB(n))))
part4d = partd +
(pABGD {m, i,1, k)"
( {pABGD (m, J, 1, k) /pAGD (=, 1, k) }
+(pABG (m, j,1) /pAG(m, 1))
+ {pABD (m, j, k} /pAD (m, k})
+ (pAB(m, j} /pA(m))}))

enddo

partl = partl - (4.0d+0*pABGD(i, j, k,1})
part2 = part2 - (4.0d+0*pABGD(i, 3, k,1})
part3 - pws - (4.0d+0*pABGD{i, j, k,1}}
part4 = - (4.04+0*pABGD{i,j, k,1)}
parts = pGDll,k)/(pG(ll *pD{k})*

({pGt1) "pABD(1, ), k)}
+{pD{k) *pPABG(1,].,1}))
part5 = part5 - (2.0d+0*pABGD(1, j,k,1)}
part6 = pAB(1,j)/(pA(1)*pB{()})*
( (pA{2}*pPBGD(3.1,Kk))
+(pBL3)*pAGD({1,1,k)})
part6 ~ part6 - (2.0d+0*pABGD (1, ),k,1))
DE_apb(1,1) = DE_apb{l,l) +
{(epxb(1,j,k,1}* {partl + part2 +
part3 + part4 + part$ + parté})/
4.0d+0

partl = (pA(1)*pABG(k,1,3)) +
(pB17] "pABD (k,1,11) "+
{pA (k) "pABD (i, ), 1)) +
(pB(L) *pABG(1, ], k}) *
ipAB{2, 3) *pPAB(k,1})
partl = partl - (5.0d+0*pABGD({1,3,k.1))
DE_apb(2,1)= DE_apb(2,1) +
(parti*epxbiy, j k., 1))

partl = (
(PAD{i, k) *{(pAD(i,1l) *pAD{], k}) +
{pABD (1, j,1)*pD(k]))} +
(pAGD 3,1, k)'pA(l)))/(pA(x)'pD(k))) +
«pacn,n'upmau.).k)'pcu +
{pBG ).k} * pBG(x.ll) +
(pBGD(:,l,k) pB(])))/(pB())'pGil))! +
(PAG (3, k) * ((pAGD (1, k, 1) *PA{])) +
(PAG (1, k) *PAG(j, 1)) +
(p.\BG(),x,l)'pG(k)l)/(pA())'pG(k)H +
(PBD (3,1} * {(pBGD (), k. 1) *pBA}) +
(pBD{J,1) *pBD{i, k)) +
(PABD (3,1, k) *pD(1)})/{pB(1) *pPD (1)) )}
partl = partl - (1.2d+1*pABGD{1,),k,1}))
DE_apb(1,2) = DE_apb(l,2) +
(lepxb(1, j, k, 1) *partl) /2.0d+0)

partl ~ {
{PAD (2, 1) *pABD (i, X, 3} /pA(1} )+
{pBG (3, k) *pABG{l, 3,1} /pB(J)}+
(PAG (%, k) *PAGD (1, %, 3) /PG (k} )} +
lpBD(J.l)"pBGD(k,.\.l)/pD(lH*
(pBD k., 3) *PABD (1, k, 1) /pB(k)}+
(pAG(1.1) *pABG(1, 3, k) /pALl)}+
(PAD 1, )) *pAGD (i, k, J) /pD()) )+
(pBG ik, 1) *pBGD (3,1, 1) /pG(1) )}

partl = partl - (8.0d4+0*pABGD{i, j, k,1})

part2z = 0.0d+0

part3 = 0.04+0

do m~l,ncomp

part2 - part2 + {

(PABGD (1, j,m, 1)
*pABG ({1, k,m) /pAG (i, m})+
(PABGD (i, j, k,m}
'nhBDll,),m)/pBD(j,n))f
({pABGD (i, m, k,
pBGD(m,k,Jl/pBG(m,ka
{PABGD (m, j, k
pﬁGD(m,l,ll/pAD(m.l))*
(PABGD (1, k, m,
'nﬁBG(x,k,m)/pBG(k.m))'
(pABGD (1, k,i,m)
uABD(l,],m)/pAD(l.m))*
{(PABGD (1,m,1,)
pﬂ;ﬂ(n.k.))/pﬂb(m,]))*
{PABGD (m, k, i
'a\@(m,x,l)/pAGlm.l.)))

partl = part3 +
(oABGD (i, j,m, 1) "
pABGD(x.k,m.l)/pAGD(x m, 1))+
(pﬂnﬂD(x.J.k.n)
pABGD (1, j, kx,m) /pBGD (i, X, m) } +
lpABGDu,m,k,l)'
pPABGD (i,m, X, 7) /pABG (i,m, k) )+
(pABGD {m, j, Kk, 1) *
PABGD (m, j,1,1) /pABD (m, 3, 1) ) +
(PABGD (1,m, k, 3} * .
pABGD (1,m, 1, ]) /pPABD (1, m, j) )+
{PABGD {m, k,2,1) "
pABGD (m, k, 1, j} /pABG (m, Kk, 1} )+
(pABGD (1, j,i,m) *
pABGD (1,k,1,m) /pAGD(1,1i,m))+
{pABGD (i, Xk, m, 7)*

PABGD (1, k, =, ) /PBGD (k,m, j})
enddo

part2 = part2 - (£.0d+0*pABGD (i, 3, k, 1)}
6.Cd+0*pABGD (i, j, k, 1))

part3 = payt:

DE_apb(2,2) = UZ_achi2,2) +

{(epxb{1, ), «, 1} *(partl + part2 +

part3))/4.0d4+0}
enddo
enddo
enddo

enddo

s_apb(l, 1)=DE_apbil, 1)
s_apb(2,1})=DE_apb(2,1)
s_apb(l,2)=DE_apb(l, 2} *sqrt (2.04+0)
s_apb{2, 2)=DE_apb(2,2) *sqrt {2.0d+0)

endrf

anonaoaan

Writing cutputs

a

do

1~1,Nel
CP1(i)~CP (i)
CP2(1)=CP({i}+r_CP (1)

enddo

Write(*,277) (CP1l(i),1~1,Nel)

1f

(state_£f)} then
Write{10,340)
Write(10,370) TK,structl,Iph,itr{2),GP(2)
Write (10,360}
do 1=1,ncomp
mijul{i) =GP {1)
CPX1(i)=0.0d+0
CPX2(i}=0.0d+0
enddo
1f (Nmag.gt.0) then
do 1=1,Nel
call indexing(i,12,si)
mju(12)=mju{12i+(k_B*CPl{1))
CPX1(i2)=CPX1(12)+CPl{(1)
CPX2({i2)=CPX2{12)+CP2{i)
enddo

do 1=1,Nel
mjufiy=mjula) +{k_B*CP1{i})
CPX1(1)=CP1l{1}
CPX2(1)=CF2(1)
enddo
endif
do 1=1, ncomp
acrii)=exp(mju(1}/{k_B"TK))
1f (Nmag.eq.0) then
Write(10,365) component(i),CP(a1),
component. (1) ,mju(i),
component {1} ,acr (1)
else
Write(10,365) component{i),CPX1({i},
component {1) ,mju{i),
component {1) ,acr (1)
endif
enddo

Write{l0,420) structJ,Jph,Fgy(l),Bgy(l),Btpy(l),mag(l}

1f (StructJ.eq.BCC) then
Write(l0,470)
Write(l0,4795)
Write{l0,480)
Write(10,490)
Write(10,510) *(0,0,1)’,s_apbi{l,l},s_apb{2,1)

Write(10,510) *(0,1,-1)’,s_apb{l,2),s_apb(2,2)

Write (10,520}
Write(l15,530) TK,',".,s_apb{(l,1},",’
s_apb(2,1),’,',s_apb(2,2)
endif

Write(10, 385)
Write(l0,388)
do k=1, ncomp

Write(10,390) component(k),pl(l, k},c_al(l, k),

c_bt(l,k),c_gmtl,k},c_dt(l, k)

enddo
if (Nmag.ne.(0) then

Write(10,398)

do k=1, Nmag

Write{l10,410} compcnent{k),m_al{l,k),
m_bt(1,k),m_gm(l, k), m dt (1, k)

Write(10,385)
Write(12,430) TK,’,’, (xalll,i},’.’,

.s_apbil,2),’

.
’

xbt(l,i},’,’,xgnmil, 1),’,”’ ,xdt(l,xl, s’ ri=l, Nel-1)

Write(14,460) TK,’,’,GP(1),’, ' ,Bgy(l),
Etpy(1),’,’, (CE(1),*,*,plil, 1), ", ,1-1 Nel)

do i=1,Nel
1f{(Nnag.eq.0) then
CP1(1)=CP1l{1)+delCP (i)
else
call indexing{i,12,si)
CP1(i)=CP1{1)}+(delCP(i2)/nspin(i2})
endi £
enddo

do 1=1,ncomp
CPX1 (1) =CPX1 (1) +delCPX (i)
endde

else

Write{l0, 350)

Write(10,380) TK,icount,structJ,Jph,itr(l),
GP{1},dGP, structl, Iph,1tr(2),GP(2),f1l

Write(10,360)

do 1i=1, ncomp
mju (1) =GP (2)
CPX1(1)=0.0d+0
CPX2(i)=0.0d+0
enddo

1f (Nmag.gt.0} then
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311
321
330
340
350
360
365

370

380

385
388

do 1=1,Nel
call indexing{i, 12,53}
mju(iZ)=mjuir2) ~ tx_B*CPl (1))
CPX1{12)=CPX1(12) «CP1 (1}
CPX2{12)=CPX2(12)+CP2 (1}
enddo
else
do 1=1,Nel
mju{y)-mjyu(i) +{k_B*CP(1})
CPX1(i)=CPl (1)
CPX2(1)~=CP2(1)
enddo
endyrf
do i-1, ncomp
acr (1) =exp(mju(i) / tx_B*TK}}

1f (Nmag.eq.0) then
Write{(10,365) component(i),CP(1),
. component {1),mju{1),
b component (1), acr (1)
else
Write (10, 365) component(1),CPXli{x},
> component{1),mju(1},
- component (1), acr (1)
enda f
enddo
do j=1,2
Write (10,420} struct(3},nphij),Fgyt{3).Bgy(3),
* Etpy{j}.mag(3)

Write(10, 385}
Write (10,388}
do k=1, ncomp
Write(10,390} componentik),pli}, k),
4 c_ally, k), c_ctiy, k), c_gm{y, k),c_dt(],k
enddo
Wraite(10,3B5)
1f (Nmag.gt.0) then
Write (10, 398)
do k=1, Nmag

Write{(10,41C) component(k),m_al(j, k).

* m_bt (), <}, m_gm¢), ky,m_de (3, k)
endde
endif
Write (10, 385)
enddo
Write(l2, 440) TK, '.',l(ral(].ll. 2

- xbt (j,1),'," ,xgmniz,2),",
. xdt (), 2), 7, 1=i, Nel- 1).]-1 2}

Write(14,450) TK,*,’,1ZP(3),*,’Fgy(3).’,’ ,Egy()).".",
A Etpy (7}, . .3 1,‘1,1CP(1). ,',1=1,Nel-1)

endyf

Changing external parameters (TK,CP...)

Changes the chemical potent:a.s

1fi.not.state_f) then
1f(Nmag.eq.0) then
do 1=1,Nel
CP1(1)=CPl{1)+2
CP2{1)=CP2(1) +de CP (1)
r_CP(1}=CP2{1}-C=1 (1)
CP{1)=CP1l(1r}
CPX1(1)=CP1l (1)
CPX2{1)=CP2 (1)
enddo
else
do 12=1, ncomp
CPX1{12}=-0.0d+0
CPX2(12)~0.0d+0
enddo
do 1i=1,Nel
call indexing(i, -2,s1)
CPl(1)=CPl(1)+de CP (1)
CP2(1)=CP2(1)rZe_CP{1])
CP(1}=CP1{1)
r_CP(1)=CP2{1)-CF1 (1)
CPX1(12)=CPX1(12)~+CP1(1)
CPX2(12)-CPX21(12)~CP2(1)
enddo
Write(*,
endif
enda £

LCP(1)

277) (CP(.),1=1,Nel)

Write(*,276}) (c_CP(r),1=_, Nel)
TK=TK+delTK
RTR=1.0d4+0/TK

enddo

Format (/1X,’ Iph-phase .s more stable, choose diff. CPs’)

Format {1X,’'icount > >countf: No phase boundary’)

Format {1X,’dfl < dflf: Ko phase boundary’}

Format{/1X,15(1H-),’Grand P-otential calculation’,26({1H-)})

Format (/1X,15(1H*), " PHASE BCCUNDARY CALCULATION’,27{1H*))
Formatl/lx,'CP (K/at]:
activizy:")
=-> ¢,B12.5,7X,A2,"’
=-> ',F12.10)

mju (J/mol]:",

Format {1X, A2, " -> ",El2.5,1X,

. X, AZ,°
Iph= *,A3,12,1X,

Format {/1X,’TR= *,F8.2,1X," faitr= *, 15,
6)

h SX,’GP~ ‘,E12.

Format {/1X,’TR= ’,F8.2,1X,"
/1X,’Jph= ‘,A3,12,1X, -trl= *,15,5X,
‘GPl= ' ,E12.6,3X, dGP= ‘,B10.3,
/1X,* Iph= *,A3,12,1X,"-tr2= *,I5,5X,
‘GP2= *,B12.6,4%," f1= " ,E10.3)

“count= ’,I4/

e w

Format {1X, 59 (1H-))

Format(1X,*}’,
* 3X,

3X,71’,3X,’c_al’,
3X,7c_dr’,2X,71%)

2X,’Blmt’, 22X, 71",

fe_bt!,2X,”71%,3X

1%,°7,3%, "pl*
fc_gm’,2X.7 1",

390

398

410

420

430
440
450
460

470
475

480
490
510
520
530
540

5000

Format (1X,’|’,3X,A2,2X,"|*,1X,F6.4,1X,”|’,1X,F7.5,1X,’|’,
. 1X,F7.5,2X, ' [*,1X,F7.5,1X,’ |’ ,1X,F7.5,1X," |*)

Format (1X,’ {”’,2X,’Elmt*, 10X, |’
M 3%, ’m_bt*,2X,* |, 3%,

»3%X,’m_al’,2x, ",
‘m_gm’,2X,*1’,3X, m_dt’,2X," 1’}
Format (1X,’ |”, 3X,A2,11X," |’ ,1X,F7.5,1X," 1",

M 1x, F7.,,1X,’I',1X F7.5,1%,"1*,1X,F7.5,1X,’ ")

Format (/1X,’Phase= *,A3,12,1X,’Fgy=- ’,El2.6,"
* ‘Egy= ‘,212.6,’ J/mol’, SX,’Etpy- *,F8.5,’
. ,5X, “mag= *,FB.4,’ m_B’/)

J/mol’, /1X,
J/mol.K’
Format (F6.0,Al, (64 (F5.4,A1)))

Format (F6.0,Al, (40(F5.4,A1)))

Format (F6.0,A1, (8 (E14.8,A1)), (S(E10.4,A1))

Format (F6.0,Al, (3(B14.8,A1)), (16(B10.4,A1,E12.7,A1))}

Format (/1X,  ¢4¢9888 88484 44APB enerqles!l!’i!'Oilllllfl'!
R}

Format (1X, * sigma*({a0**2) 1in

Format (1X,’ ! Yector -> i a0<l1,0,0> al/2<1i,1,1> |*)
Format (1X, Plane 1 (A}
Format (1X.’! *,A9,’ I “,El1.5,3X,E11.5," |}

Format(lx,"l”'0lilll0"ll!l'l.’llllii!!lll.i’il"!l’
Format (F6.0,Al, 4(E14.8,A1)

Format (E20.14)

continue

close (Unit=1C}
close {unait=12})
close{unit=14}
close{unit=-13}
stop

end

MR R A R T T o)

subroutine energyb(pr_enm}

I R

Parameter {NN=17)

Based on a s:milar subroutine 1n program bfcc. for
{C. Colipnet)

Adapted by Claudioc G. Schoen in the actual form
(July 17th 2397)

For BCC phases in the irreqular tetrahedron cluster
approximation:

Reads interaction parameters in unmit 10 and calculates
the eigenenergy matrix (epsilon) for the system

Common/Csys/Nel, Nmag, ncomp, nspin, component
Common/CBCC/epsb, epch, epxb

1nteger (kind=2)
integer (kincg=2)
integer (kind=2)
integer (kind=2)

1,3,k 1
Nel, Nmag, ncomp, nspin
na

nj,nk,nl
dimension nspin{NN)

real (kind=2}
real (kind=2)

real (kind=2)
real (kind=2)

epsb, epcb, epxb
wlc,w2c,wim, w2m
etetra

51,53, 5k,sl

dimension
dimension
dimension
dimension
dimension
dimension
dimension

epsb (NN, NN, NN, NN} , epcb (NN, NN, NN, NN)
epxb (NN, NN, NN, NN)
etetra (NN, NN, NN, NN)

w.c (NN, NN)

wim (NN, NN)

wZc (NN, NN)

w2m {NN, NN}

character*2 component
character*l pr_enm

dimension component (NN)

50

70
80
90

. AZ,’

Format (2F8.1)
Format (F8.1)
Format (‘ Reading chemical interactions’)

do 1=1,NN
de j=1,NN
wlci{i, 3)=0.0
w2ci:, 3)=0.0
wim(1,3)=0.0
wiZm{i, 3)=0.0
do k=1,NN
do 1=1,NN
etetra{i, ;,k,1)=0.0
enddo
enddo
enddo
enddo

Format (/1X,’ ******+++¢+Chemical Interactions:*rrtsssassss)
Format (/1X,* **svasssruspyagneric Interactions:*resssasssar)
Format (1X,'wlci{’,A2,’,’,A2,’)= *,6F12.5)

Format (1X,’'w2c{',A2,’,’,A2,’)= ' ,F12.5)

Format (1X, ' ecetra(’ ,A2,’," ,A2,',’.,

¢’ R2,7 )=, F12.5)

1t {ncomp.gt.) then
Write {10, 50)
Write(*,30)
do 1=1,ncomp
do j=1,nco!
read(5,10) wic(a,)),w2c(i,j)
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Write(10,70) component{i),component ()}, endif
. wlci(i, 3)
Write(10,80) component(i)},component (}). return

* w2cii,]) end
wlc{j,i)=wlc{1, 3}
wic{},1)=w2c{1, ])

enddo
enddo
do 1i=l, ncomp
do j=i,ncomp
do 1=j,ncomp

el e A e R I T T T YY)

subroutine enerqgyf (pr_enm)
[ R e L L A LR N Ts,

Parameter (NN=17)

do k=1,1 1 S it
Read(5,20) etetraii,j.x,1l) c Based on a similar subroutine in program bLfcc.for
Write(10,90) comp (1), comp it (1), c (C. Colinet)
. component {k) , component (1}, (o} Adapted by Claudio G. Schoen in the actual form
. etetrafi, ), k,1} [od {July 17th 1997)
etetrat),:, X, .)=etetra(y, 3, k, 1) [ad
etetra(i, j, 1, x)=etetra(y, 3, k, 1) C For FCC phases in the regular tetrahedron cluster
etetra(y,z,1l,kx)=etetra(1,j, k,1) C approximation
etetratk,.,1, ;)=etetra(y, 3.k, 1) c
etetratk,l, j, 1)=etetra(1, j, k, 1) C Reads 1nteraction parameters 1in unit 10 and calculates
etetrall,x,1, j)=etetra(i, }, %k, 1) C the eigenenergy matrix (epsilon) for the system
etetratl,x, j,:}=etetra(1, ,k, 1) O m m - ¢
enddo
enddo Common/Csys/Nel, Nmag, p, NSpLn, ponent
endde Common/CFCC/epsf, epcf
enddo
endif integer(kind=2) 1, 3,k,1
integer (kind=2) Nel, Nmag, ncomp, nspin
C-=———=—== Ittt ettt o integer (kind=2) ni,nj),nk,nl
C Reading magnetic interactions
C--———=-= S e mmeeo c dimension nspin{NN)
real (kind=2) epsf,epcf
110 Format (1X,’wlm{’,A2,",’,A2,")=",F12.5) real (kind=2) wlc,wlim
120 Format(1X,’w2m{’,A2,’,’,A2,")=",F12.5) real {(kind=2) etetra
130 Format(lX,’Reading magnetic .nteractions’) real {kind-2) si,s7j,sk,sl
1f {Nmag.gt.0) then dimension epsf (NN, NN, NN, NN), epcf (NN, NN, NN, NN)
Wrate({10,60) dimension etetra(NN, NN, NN, NN)
write{*, 130) dimension wlc (NN, NN)
do 1=1, Nmag dimension wlm{(NN, NN)
do j=1,Nmag
read(S,10) wlm(i,:),w2ml1,)) character*2 component
write(l0,110) component (1),componenti{j}), character*l pr_enm
. wimi{y, 3}
write(l0,120) component (1),component{j), dimension component (NN)
. w2mi1, 1}
wim(), 1}=wlmix, ;) Cm s o e e
w2miy, 1}=w2mii, ) Cc Reading chemical interactions
enddo o
enddo
endif 10 Format (£F8.1)
20 Format (F8.1)
T T T T T T T e e e e e e oo c 30 Format ( Reading chemical interactions’)
< Calculating eigenenergy matr:x
L ettt i b bt bt bt i ittt dtetted c de 1=1,NN
do j=1,NN

140 Format(lX, 21 (1H*), 'Energy Matrax:’,20(1H*)) wicii, J)=0.0

150 Format(lX,’*n1 51 ns s) nk sk’, 3X, wlm(, 7)=0.0
* ‘nl sl epsilon ") do k=1,NN
160 Format{lX,’*’,4(A2,1X,F6.3,1X%),1X,B12.5," ") do 1=1,NN
170 Format({lX,55(1R*)) etetrafi, 3, x,11=0.0
enddo
1f (pr_enm.eq.’Y’) then enddo
write(10,140) enddo

write(10,150) enddo
endif
50 Format (/1X,* ¢t**s**ereeChemical Interactiona:*+++*
1f (Nmag.eq.0) then 60 Format {/1X,’ *********«+Magneti1c Interactions:***=
do 1=1,Nel 10 Format (1X,’'wlc{’,A2,’,’ ,A2,’)= *,F12.5
do }=1,Nel 90 Format (1X,’ etetra(’,A2,’,’ ,AZ,’,’.,
do k=1, Nel * A2,7,’,A2,)=',F12.5)
do l=1,Nel
epsb(i, },k, 1) =etetra(y, 3.k, 1} 1f{ncomp.gt.1l) then
. +{wlc(r, k) +wlc(a,l} Write (10, 50)
. +wlc(j, k) rwlcl], 1)) /6. Write(*,30)
. +i{w2ci1, ;) +w2cik, 1)) /4. do 1=1,ncomp
epxb(i, 1,%, 1) ~epsb(1, 1,k, 1) do j=1,ncomp
1f (pr_enm.ea.’Y’) then read({5,10) wic(i,])
Write(.0, .60) component(i),0.0, Write(10,70) c 1t (1), ponent {3},
h cemponent (3),0.0, . wlc(i,3)
. conponent {(k)}, 0.0, wlc(j,1)=wlc(a, j)
v cenponent (1),0.0, enddo
M epsbii, J, k. 1) enddo
endif de 1=1,ncomp
enddo do j=1,nconp
enddo do k=j,ncomp
enddo do l=k,ncomp
enddo Read (5, 20) etetra(i,),k,l)
else Write{l0, 90} component (1}, component {7},
do 1=1, Nel * P it tk), comp tily,
do j=1,Nel M etetrai{i, ), k,1)
do k=1,Nel etetra(j,1,k,l)=etetra(, j, k, 1)
do 1=1,Nel etetra(i, ),1, k)=etetraia, j,k, 1}
call i1ndexing(i,ni,s1) etetra(j,1,1,k}=etetra(i,j, k,1)
call indexingt(},nj3,s)) etetrai(kx,l,1, j)=etetraia, ), k, 1)
call indexingtk,nk,sk) etetralk,l,J,1)~etetra(i, ), k,1)
call indexing¢l,nl,sl) etetratl,k,1, ))~etetra(s, j,k,1}
epxb(ni,nj),nk,nl) = etetra(ni,nj,nk,nl) etetra(l,Xx,),1)-etetraly, j, k,1}
* +{wlc(na,nk)+wlcini,nl) etetra(i,k,l, j})-etetrafa, j, k,1}
. + wlcinj,nk)+twlcinj,nl)) /6. etetra(i,l, ), k}=etetra(a, 1)
. +(w2cini,nj)+w2cink,nl)) /4. etetra(i,l,k, j}=etetra{i,j,k,1)
epsbii, j,%,1) = epxb(ni,nj,nk,nl) etetrafi,k, 3,1}=~etetrafi, j,k,1)
. + tiwlm(ni, nk) *s1*sk} etetrafj,k,1l,1)=etetrat, j,k,1)
hd + {wilmini,nl)*s1*sl) etetraf(},l,1,k)=etetra({i,j,k,1)
. + (wlm(nj,nk)"s3°sk) etetra{(j, k,1,1)=etetraf, j, Xk, 1)
* + {(wim(nj,nl)*sjy*sl)}/6. etetra(),l,k,1)-etetrafy, j, k, 1)
= +((w2mtni,ny) *si1*s7) etetratk,1,3,l)=etetra(s,j,k,1)
- + (w2mtnk,nl) *sk*sl))/4. etetratk, ],1,1)=etetrafi,j,k,1)
1f({pr_enm.eq.’Y’) then etetra(k, J,1, l}=etetrafi, ), k,1)
write (10, 160) component (ni}, etetra(k,1,1, j)=etetra(i, ).k, 1)
N t{nspin(ni)-1}*s1/2.), etetra(l,1, J,k)=etetraly, j,k, 1)
. conponent (nj), ({nspinin))-1)*s3/2.), etetra(l, ), k, 1) =etetrali, j, k, 1)
M component (nk), ({nspan{nk)-1)*sk/2.), etetra{l,i, k, j)=etetraf,j, k,1)
. cemponent {nl), { (nspan{nl)-1)*s1/2.), etetra(l, j,1, k)=etetrali, j, k,1)
* epskiti, 3, k, 1) enddo
endif enddo
enddo enddo
enddo enddo
enddo endif
enddo
endif C ST e c
C Reading magnetic interactions
1f (pr_enm.eq.’Y’) then c - -C

write(l0,170)
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110 Format{1X,’wlm{’,A2,’,’,A2,")=",F12.5)
130 Format{’Reading magnetic interactions’}

1f (Nmag.gt.0) then
write{10,60¥
write(*,130)
do 1=1, Nmag
do 3=i,Nmag
read(5,10) wlm(1,))
write (10,110) compornent(1i),component ()},

- wimiy, J)
wim(j,1)=wlm(1, }}
enddo
enddo
endif
c - —— - c
o Calculating eigenenergy matr.x c
P SRR S PR PR S —
140 Format (1X,21(1H*),’Energy Mazrax:’,20(1H*})
150 FormatilX,’*ni s1 nj s nk sk’, 33X,
* ‘nl sl epsilon Y

160 Format (1X,’*’,4({A2,.X,F6.3,.X),1%,B12.5,'*")
170 Format {1X,55(1K*))

1f (pr_enm.eq.’Y’) then
write(10,140)
write(10,150)

endirf
1f (Nmag.eq.0) theo
do 1=1,Nel
do j=1,Nel
do k=1, Nel
do 1=1,Nel
epsfii, j,k, 1} —etetra(s, ), k, 1)
. ~twlctr, gt-wlc(i, 1)
. + wlcii, cy-wlciy,l}
. + wlcii, J)1+wleik,1))/2.
1f(pr_enm.eq.” Y] then
#rite(l0, €I} component(i),0.0,
. compozent (3),0.8,
. compozent (k),0.0,
- compenent {1),0.C,
M apsfi, 7, k, 1)
endxf
enddo
enddo
enddo
enddo
else
do 1=1, Nel
do j=1,Nel
do k=1, Nei
do 1l=1,Nel
cali indexingti,ni,si)
call indexinag¢3;,nj,s3)
call indexing(k,nk,sk)
call indexingti,nl,sl)
epsfii, ), k, 1) =etetra(ni,nj,nk,nl}
. + twlctnz,nk}+wlc(ni,nl)
N + wlc(n-,nk)+wlc(n)y,nl)
. + wlciaz,n))+wlcink,nl))/2.
. +{(wim{n=,nk)*s1*sk)
. + (wlmirz,nl)*s1*sl)
b + (wlmt . nk) *s)*sk}
v + (wim(cs,nl)*s)*sl)
. + {wlminz,nj)*s17sy)
* + (wlming,nl)*sk*sl))/2.
1f(pr_enm.eq.‘Y’) then
write(l0, €0} component(ni}),
. {({nspxn(ni)-1)*sx1/2.),
. comporent {nj}, ({nspaininj}-1}*=s3/2.),
M comporent {(nk), ({nspin(nk) -1} *sk/2.],
v comporent {(nl), ({nspin{nl)-1)*sl/2.}.
. epstiz,3,k, 1)
ends f
enddo
enddo
enddo
enddo
endif

1f (pr_enm.eq.’Y’) then
write(10,170}
endif

return
end

v et ¥ s a s s R s e e ARSI KA TN RO EATaT I Co s eRattbEtt s et artisttbterasaraC

Subroutine indexing{a,na,sa)
s S L L R T T R SRR S L Y

Parameter {NN=17)

Created by Claudic G. Scheen (July 10th 1997)

Converts the absolute index zf the alloy species (a)

1into the index of the alloy component (na) and its

reduced spin: sa=s{a)/s c

GanNnNnan

Common/Csys/Nel, Nmag, ncomp, =spin, component
integer (kind=2) Nel,Nmag, ncczp, nspin
integer (kind=2) a,na

integer (kind=2) contr,contrl,1

integer (kind=2) uppb

character*2 component

Dimension nspin{NN)
Dimension component (NN)

real (kind=2) sa
uppb=0
do 1=1, Nmag

uppb=uppb+nspan{i)
enddo

contr=a

1f {a.gt.uppb) then
1=a-uppb+Nmag

else

1=0
do 100 while{contr.gt.0)
contrl=contr
contr=contr-nspin{itl}
1=i+l
100 enddo
endif
na=1
1f {na.le.Nmag) then
sa=1.0d+0-((2.0d+0*{contrl-1))/ (nspin(1)-1))
else
sa=0.0d+0
endif

return
end

R T R e e A s e e AL SRRl

subroutine refgp{Phasel, reference)
R O T e R S Y]

Parameter (NN=17)

= e e e — oo C
o4 Created by Claudio G. Schoen (July llth 1997)

C Reads the reference states for the free energy in the

[of text file (SGTE.txt)

C Phasel: Label for the structure

C-=--= B ittt C

Common/Csys/Nel, Nmag, ncomp, nspin, component

1nteqer (kind=2) Nel, Nmag, ncomp,nspin
integer (kind=2) 1,)
integer{kind=2) flagl

dimension nspin(NN)

real (kind=2) prmts
real {(kind=2) reference

dimension prmts(8)
dimension reference (NN, 8}

character*2 component,name
character*3 Phasel, phase

dimension component (NN)

do 1=1,NN
do 3=1,8
reference{1, ))=0.0
enddo
endde

Open {Unit=9%,F1le=' SGTE.txt’,Status='0ld’, Form=’ Formatted’)
10 Format (A2, 1X,A3,1X,8B15.10)

flagl=Q

Read(9,10,END=100) name, phase, {prmts{1},1~1, 8}

do 1=1, ncomp
1f (name.eq.component{i)) then
1f (phase.eq.Phasel) then
do j=1,8
reference{1, })=prmts{))
enddo
flagl=flagl+l
endif
endif
endde

20 Format {’ Incomplete list of parameters in file SGTE.txt’}
1f (flagl.lt.ncomp) then
Write(10,20)
end1f
30 Format ('Warning: There 1s something wrong in file SGTE.txt!’)
if (flagl.gt.ncomp) then
Write(*, 30}
Write{10, 30)
endif
100 continue
Close (Unit=9)
return

end

A R R R PR E A A A PR AR AR IR RS AN PN PN R A IR E SRR RN T AR RN R RN
C c

subroutine ORDBCC{Iphase,itr,GP,Fgy,Etpy,Eqy)

R R e e e R e e PR R R LSRR R SRR e ol

[od Rttt [
(o4 Based on a similar subroutine in program bfecc.for

C {C. Colinet})

Cc Adapted by Claudio G. Schoen in the actual form

c (July 18th 1998)

c Last changed by C. G. Schoen in August 12th 1998

C

C For BCC ordered phases in the irreqular tetrahedron

C cluster approximation

C

Lod Natural Iteraction minimization of the free energy

(o4 B ettt e C

Parameter (NN=17)

Common/Csys/Nel, Nmag, ncomp, nspin, component
Common/CBCC/epsb, epch, epxb
Common/Cpot/ecp, TK, RTE

Common/Cord/zZ0O

integer (kind=2) i, j,k,1
integer{kind=2) Iphase,itr

integer {kind=2) Nel, Nmag,ncomp, nspin



Cédigo do programa CVM usado

nos cdlculos

D.11

integer(kind=2) Ichem,Imag
integer{kind=2) a,b,1l

dimension nspin (NN}
dimension 11 (NN}

real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)
real tkind=2)
real (kand=-2}
real (kind~2}
real (kind=2}
real (kind=2)
real {(kind=2}
real (kind=2)

epxb

TK, RTK

Zin,Z%Zlnin,d2

Zh, Zhln

Cptm

VAL, VBT, VGM, VDT

Y1AG, Y1AD, Y1BG, YIBD
Y2AB, Y2GD

XAL, XBT, XGM, XDT

VALLn, VBTln, VGMln, VDTln
Y1AGln, Y1ADln, Y2BGln, Y1BD1
Y2ABln, Y2GD1ln

XALln, XBT1ln, XGMr, XDTln
2Vln,2Y1lln, 2Y2.n, ZX1ln
Emgp, Egp, GP1ln

2transf

character*? component
Dimension component {NN}

dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension
dimension

ep:b(NN,NN,HN,NN).epcb(NN,NH,
epxb (NN, NN, NN, NN}

ecp (NN, NN, NN, NN)

20 (NN, NN, KN, NN) , Z. = (NN, NN, NN,
Z1lnin (NN, NN, NN, NN)
Zhln{NN, NN, NN, NN}, Zh (NN, NN, NN
2z (NN, NN, NN, NN)

VAL (NN, NN, NN} , VBT (XK, NN, NN}
VGM (NN, NN, NN} , VDT (NK, NN, NN)
Y1AG (NN, NN}, Y1AD (NX, NN)

Y1BG (NN, NN) , Y1BD {NN, NN)

Y2AB (NN, NN), Y2GD (NN, NN)

Y1AG1ln (NN, NH), Y1AD . (NN, NN)
YLBG1n (NN, NN), Y1BD1ixz (NN, NN)
Y2ABLln (NN, NN), Y2G21n (NN, NN}
XALLn (NN), XBT1ln (NN), XGMln (NN}

Data itrf,test2/20000,1.C0e-4"
Ichem=mod {Iphase, 10}
L f

iNmag.gt.0) then
Imag=Iphase/10

1f (Imag.gt.Q) then

11{1)=1

1f (Nmag.gt.l)} then
do 1=2,Nmag

1l{1)=11¢a1-1)+nspin(a1-1)

enddo

endif

endif

do 1=1,Nel
do j=1,Nel
do k=1,Nel
do l=l,Nel
Zlnty, 3, k, 1) =dieg (2081, 3. k,
enddo
enddo
enddo
enddo

1tr=0
d2=2.0

do 100 whale(.not. ((dZ.lt.zestZ).or. (1%
1tr=i1tr+l

epsb, epcb, ecp, 20, 5P, Fgy.Btpy. 29y

o

KN, NN)

NN

» NN}

XAL(NN) , XBT {NN) , XG¥ (KN} , XDT (NN}
VALLn (NN, RN, NN), VBT 1n (NN, NN, NN}
VGM1n (NN, NN, NN) , V2T in{NN, NN, KN}

XZTIn(NN)

o

r.ge.atrf)))

é Reduction relations
g VABG(1, j, k)= alfa, beta,gamma triangle cluster probability
g VABD(1, J,1}= alfa, beta,delta triangle c..ster probability
g VGDA(k,l,1)= gamma,delta,alfa triangle s_uster probability
g VGDB (k, 1, )= gamma,delta,beta trianglie cluster probability
g Y1AG(1,k)= alfa,gamma nearest neighbour rair cluster probability
g Y1AD{1,1)= alfa,delta nearest neighbour pair cluster probability
g Y1BG(), k)= beta,gamma nearest neighbour cair cluster probabylity
g Y1BD(3j,1)= beta,delta nearest neighbour zair cluster probability
g Y2AB(1,))- alfa,beta next nearest neighoour pair cluster
probability
g Y2GD(k,1}= ganma,delta next nearest ne:z=tour pair cluster
probability
g XAL{1)= alfa point cluster crobability
g XBT (]}~ beta point cluster probability
g XGM (k)= gamma point cluster crobabality
g XDT(1)= delta point cluster probabilicy
S p -

do 1=1,Nel

XAL(1)=0.0d+0
XBT(i}=0.0d4+0

anonNnnNaonNnonNaaoNNaan

XGM(1)=0.0d+0
XDT (1) =0.0d+0
do j=1,Nel
Y1AG (1, 3)=0.0d+0
Y1AD(1, 3)=0.04+0
Y1BG(1, 3}=0.0d4+0
Y1BD {1, 3} =0,0d+0
Y2AB (1, j)=0.0d+0
Y2GD{1,))=0.04+0
do k=1, Nel
VAL({i, ], k)=0.0d+0
VBT (1,3, k}=~0.0d+0
VGM{1, ), k)=0.04+0
VDT (1, ), k)=0.0d+0
do 1=1,Nel
2lnin{i, j,k,1)=21n(i, 3,k,1)
VAL(1, J, k)=VAL({(1, ), k) +20(2,1, ], k)
VBT (1,3, k)=VBT (i, ].k) +20(1,1, 3, k)
VGM (1, 7, k) =VGM (1, ], k) +20(j, k., 1,1}
VDT(1i, ), k}=VDT(i,,k)+20¢),k,1,1i)
Y1AG(1,))~Y1AG{1, J) +20(1,k, j,1}
Y1AD ({1, ))=Y1AD (1, ]) +20{1,k, 1, ))
Y1BG (1, )) =Y1BG{1, ) +20(k, 12, ), 1)
Y1BD (1, J) =Y1BD {1, 3} +Z0tk, 1,1, j)
Y2AB (1, J)=Y2AB({1, J)+Z0{1i, ), Xk, 1)
Y2GD (1, 3) =Y2GD {1, 3} +20(k, 1,1, 3)
XAL(1)=XAL{1)+20(i, j, k, 1)
XBT (i) =XBT(1r}+20{l,1, 3, k)
XGM(i)=XGM(1}+20{k, 1,1, ])
XDT (i) =XDT{1}+Z0{j, k, 1,1}
enddo
VALln(1, 3, k}=dlog{VAL(1, 3,k})
VBTIn(i, 3, k) =dlog (VBT (i, j,k))
VGMIn (1, 3, k)~dlog(VGM (i, 3, k})
VDTln(y, 7, k) =dlog (VDT (1, j, k)
enddo
Y1AGIn (1, 3)=dlog(Y1AG (i, 1)}
Y1ADln (1, 3)=dlog(Y1AD (1, )}
Y1BGln (1, ))=dlog(Y1BG ({1, )))
Y1BD1ln (1, 3)=dlog(Y1BD (1, 3})
YZ2ABln (1, j)=dlog{Y2AB(1, })}
Y2GD1ln(1,])=dlog{¥2GD (1, 1))
enddo
XALln(1)=dlog(XAL{1))
XBTln{1)=dlog {(XBT (1))
XGM1In(1)=dlog {XGM{1) )
XDT1ln(1r)=dlog (XDT (1))
enddo

Zmgp=0.0d+0

do 1~1,Nel
do 3=1,Nel
do k=1, Nel
do 1=1,Nel
ZV1ln=VALIn(1,k, 1) +VBTln{), k, 1)
+VGMln(k, 1, )) +VDTln(l, 1, )}
ZY1ln=Y1AGIn{1i, k) +YlADIn{a, 1)
+Y1BGln(3,k)+Y1BDin(), 1)
2Y21ln=YZABln{i, J)+Y2GD1ln(k, 1)
ZX1n=XAL1n{1) +XBT1n{]) +XGMln (k) +XDTln (1}
Zhln(y, ), k,l)=epcb{i, ).k, 1) +{ZVin/2.0d+0)
-(2Y11n/6.0d+0) - (2Y¥21n/4.0d+0}
+{ZX1n/24.0d+0)
Zh{1, 3,k, 1) =dexp{Zhln(1, J, k. 1})
Emgp= Emgp+2Zh{i, 3, k, 1)
enddo
enddo
enddo
enddo

Zgp=(1.0d+0) /Engp
GPln=dlog{Egp)
GP=(6.0d+0) *GP1n*TK

do 1=1,Nel

do J=1,Nel
do k=1,Nel
do 1-1,Nel
Z0{1, 3, k,1)=2h{1, 3.k, 1) "Egp
enddo
enddo
enddo
endda
Imposing superlattice symmetry:
Ichem= 2 or 3 -> B2 symmetry
Ichem= 4 ar 5 -> DO3(L21) symmetry
Ichem= 6 -> B3Z symmetry
Ichem= 7 -> ABAC symmetry
Ichem= 8 or 9 -> no symmetry imposed

for all cases above:
Imag <> 0 -> paramagnetic phase

--c

Observation: Use options 8 and 9 unless you are having problems
te find second order lines. The symmetry conditions above may
hidden domains of existence for a priori unknown phases in the

ph. diagram

do 1-=1,Nel
do 3=1,Nel
do k=1, Nel
da 1«1, Nel

1f({Ichem.eq.2) .or. (Ichem.eq.3)) then
2z (1, 3.k, 1) ={20(1, 3, k, 1) +20{j, 1.k, 1)
+20(1,3,1,k)+20(7,1,1,k))/4.0d+0
else
1f({Ichem.eq.4) .or.{Ichem.eq.5)) then
2z(1,7,k,1}= (20t1,3,k,1)
+20(3,1,k,1)})/2.0d+0
else
1f{Ichem.eq.6) then
Zz{1,3,k,1)={20(1, 3.k, 1)
+20(k, ), 1,1)
+20(1,1,k,3)
+20(k,1,1,3))/4.0d+0
else
1f {Ichem.eq.7) then
2z{1, 3.k, 1)=(20(i, ], k, 1}
+20(k,3,1,1))/2.0d4+0
else
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2202,7,k,1)=20(1,73,k, 1}

end1f
endif
enda
end1 f
enddo
enddo
enddo
enddo
[ R ----C
C 1MPos1ng paramagnetism
c -—— -- c
1f (Imag.gt.0) then
do a=1, Nmag
do b=1, (nspin(a)/2}
30 j=1,Nel
do k=1, Nel
do l=1,Nel
Ztransf=(Zz(11{a)+b-1,3,k, 1)+
* Zztz1l(a)+nspin{a)-b,3,k,1))/2.0d+0
Zz{(1l(a)-b-1,3,k,1)=2transf
Zz(1l{aj)-nspan(a)-b, j, k,1}=Ztransf
2transf=(Zz{j,11lfa)+b-1,k, 1)+
. Zzi3,11(a)+nspan(a)-b,k,1))/2.0d4+0
Zz(j,1ta)l+b-1,k, 1} =2transf
Zz()1,2ltar+nspin(a)-b,k,l)=2transf
Ztransf={Zz{J,k,11fa)+b-1,1)+
> Zzt3,k,11l(al+nspin(a)-b, 1)) /2.0d+0
Zz{j, k,z.(a)+b-1,1)=Ztransf
Zz(j, k,-.(a)+nspin(a)-b,ly=Ztransf
Ztranss=(Zz{3,k,1,11(a)+b-1)+
* Zzt-,k,1,11(a)+nspinta)-b))/2.0d4+0
2zl3,k,_,1lta)t+b-1)=Ztransf
2z{),k,-.1lta)+nspin(a)-b)=2transf
enddo
enddo
enddo
aenddo
enddo
endaf
[t D) c
cC Calculaticn of the potentia.s
o Egy= internali energy
c Fgy=- free energy {(Helmheltz >ctential)
o4 Etpy~ entr
Cmmm mmmm e m e e e e e C
dz=0.C
Egy=0.0
Cptm=0.C
do 1=1,Nel
do j=.,Nel

3o k=1,Nel
{0 1=1,Nel
Z20(3, ), ke 1)=2212,3,k,1)
Z1lniy, 3.k, 1) ==i0g{Z0(1, ), k, 1))
dZ=dZ+abs(2intz,3,k,1)-21lnin(y, 3, k, 1))
Egy=Bgy+{6.02-J"epsb(1, 3, %, 1)*20(1, 3, k, 1)}
Cptm= Cptm+{e<pii, .k, 1}*20(1,3,k,1})
enddo
enddo
enddo
enddo

Cptm— Cptm/ (4.0d+0)
Fgy=GP+Cotm
Etpy=(-Fgy+Egy) *RTK

100 enddo

10 Format (/1X,* Iphase= ", 12,1X
. 1X, 1%, .X, "1terations: ',

*No convergence 1n ORD BCC after’,
X, test= ‘,E12.5)

1f (rtr.ge.:trf) then
Write(ll,10) Iphase,itr, =2
endif

return
end

LRy R R T

subroutaine 2ISBCC{atr,GP,Fgy, Etpy, Egy)

[ L e e R Yol

_____ . _— _— —c
Based on a similar subroutine 1in program bfcc.for
{C. Colinet}
Adapted by Claudio G. Schoer in the actual form
(July 17tk 1997)
Last changed by C. G. Schoex in 12th August 1998

For BCC disordered phases 1= the irreqular tetrahedron
cluster approximation

Natural Iteration minimizac:on of the free energy

ocoonnAaoaoaaann

Parameter (NN=17)

Common/Csys/Nel, Nmag, ncomp, —spin, component
Common/CBCC ‘epsb, epch, epxb
Common/Cpet/ecp, TK, RTK

Common/Cdzs/ZD

integer {kxnd=2) 1,3,k,1
integer (kind=2) itr
integer {kind=2) Nel, Nmag, nc=mp,nspin

Dimension =spin(NN)

real (kand=2} epsb,epch, ecp, 1J,GP,Fgy,Etpy,Egy
real (ki1nd=2) epxb

real(kind=~2) TK,RTK

real(kind=-2) Z1ln,Zlnin,dZ

real (kind=2) V,Vln,Y1,Ylla,¥2,Y¥21ln,X,Xln

real (kind=2) VVin,YYlln, YY21n, XXln,Zhln, 2h, Emgp, EGP, GP1ln
real (kind=2) Cptn

dimension epsb (NN, NN, NN, NN}, epcb (NN, NN, NN, NN)
dimension epxb (NN, NN, NN, NN}

dimension ecp (NN, NN, NN, NN}

dimensiaon ZD{NN, NN, NN, NN), Z1n (NN, NN, NN, NN}
dimension Zlnin (NN, NN, NN, KN)

dimension V({NN, RN, NN),V1ln (NN, NN, RN}
dimension Y1 {NN,NNL, Y1lln (NR, NN)

dimension Y2 (NN, NN), Y21ln (NN, NN}

dimension X (NN}, X1ln (NN)

dimension Zhln (NN, NN, NN, NN), Zh (NN, NN, NN, NN)

character*2 component
Dimension component (NN)

Data itrf,testZ/20000,1.0e-4/

do 1=1,Nel
do j)=1,Nel
do k=1,Nel
do 1=1,Nel
Zln(1,3.%,1)=dlog(2ZD{1, 3J,k, 1))
enddo
enddo
enddo
enddo

dz=-2.0
1tr=0

do 100 while{(.not.(fdZ.lt.testZ).or. (1tr.ge.1trf)))
1tr=itr+l

Reduction relations

V{i,3.,k)= (1sotropic} alfa,beta,gamma triangle cluster

probability

Y1l{1, 3= (1sotropic) nearest neighbour pair cluster

probability

Y2{1,))= (isotropic) next nearest neighbour pair

cluster probability

X(1)= (1sotropic) point cluster probability
ittt -C

aoaNanNanan

do 1=1,Nel
X(1)=0.0
do j=1,Nel
Yili,3)=0.0
v2{(1,))=0.0
do k=1, Nel
V{1,3,k}=0.0
do 1=1, Nel
Zlnin{i, 3, k, 1) =Zlnix, 3.k, 1)
Vi, ), k)=V{1, 3, k) +ZD(2, 3.k, 1)
¥1(1,3)=Yl(1, 3)+2ZD{1,k, 3., 1)
Y2(¢1, 3} =Y2¢t1, 3}+ZD{2, ).k, 1)
X(1)=X(1)+2D(1, 3, k,1)
enddo
Vin(i, 3, k)=dleog{V(i, 3, k)
enddo
Ylln{i, j)=dleg{¥1l(1,3))
Y21ln{1, j)=dlog(Y2(i, 3})
enddo
Xlntyr)=dlog(X(1})
enddo

e e e e e e e C
Prmgp—0.0
do 1=1,Nel
de j~1,Nel
do k=1, Nel
do 1=1,Nel
VVin=Vin{i,k, 3) +Vin(1, 1, j) +
. Vin{k,1,1) +Vin(k, 3, 1)
YY1lln=Ylln{i, k) +Y1lln(1, 1) +Y1ln{J, k)
- +Yllaf), 1)

YY2ln=Y21lnti, j)+Y21ln(k, 1)
XX1ln={X1n{1) +XIn{7) +X1In(k) +X1ln (1))
zhln(1, 3, k,1)=epcbii, ), k,1)

. +(VV1n/2,0d4+0) - (YY21n/4.0d+0)

> —{YY11ln/6.0d+0)+(XX1n/24.0d+0}
Zh{1, ), k, 1) =dexp(Zhin(1, 3, k., 1})
Ergp~Emgp+Zh{i, j,k, 1)

enddo
enddo
enddo
enddo

EGP=1.0d+0/BEmgp
GPln=dlog (EGP}
GP=2.04+0*GP1n*TK

Egy= 0.0
Cptn= 0.0

dz=0.0
do 1=1,Nel
de =1, Rel
do k=1,Nel
do 1-1, Nel
Z2ln{1,7.k,1)=Zhin(1, },k.1)+GPln
ZD(1, 3, k, 1)=Zh (1, 3, k, 1) *EGP
dZ=dZ+abs{2ln(i, j, k,1l)-Zlnin{i, j, k,1)}
Egy=Egy+(2.0d+0*epsb{i,),k,1)*2D{1,73,k, 1))
Cptm=Cptn+{ecp(1,),k,1}*2D(1, 3,k,1)/4.0d+0)
enddo
enddo
enddo
enddo

100 enddo

Fqy=GP+Cptm
Etpy={-Fgy+Egy) *RTK

10 Format (/1X,’No convergence in DIS BCC after’,1X,15,1X,
. ‘iterations:’,/1X,’ test= /,E12.5)
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1f {itr.ge.itrf) then
Write(10,10) atr,d2

enda f

return

end
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subroutine ORDFCC(Iphase,1tr, GP, Fgy,Etpy,Egy)

It e e AL R A AR R R A R A A A A A Al

c e
Based on a similar subroutine in program bfcc.fer
({C. Colinet)

Adapted by Claudio G. Schoen in the actual form
(July 21th 1997)

For FCC ordered phases 1in the regular tetrahedren
cluster approximation

Natural Iteraction minimization of the free energy

aooonaoana

Parameter {(NN=17)

Common/Csys/Nel, Nmag, ncomp, nSpin, compenent
Common/CFCC/epsf, epct
Common/Cpot/ecp, TK, RTK

Common/Cord/20

integer{kind=2) i, J,k,1
integer{kind=2) Iphase,1tr

integer (kind=2) Nel, Nmag, ncomp,nspin
integer (kind=2} Ichem, Imag
integer(kind=2) a,b,al

dimension nspin (NN)
dimension 1l {NN)

real {kind=2) epsf,epcf,ecp,0,GP,Fgy,Etpy, Eqy
real {kind=2) TK,RTK

real(kind=2) Zln,Z1lnin,d2

real {(kind=2} 2h, Zhln

real (kind=2) Cptm

real (kind=2) Y1AG,Y1AD, Y1BG, Y1BD, Y1AB, Y1GD
real {xind=2) XAL, XBT,XGM, XDT

real (kind=2) Y1AGln,YlADIln, Y1BGln, Y18D1n, Y1ABln,Y1GDln
real (kind=2) XALln, XBT1ln,XGM1n,XDT1ln
real(kind=2) ZYlln,ZXln

real (k1nd=2) BEmgp,Egp,GPln

real {kind=2) 2transf

dimension epsf {NN, NN, NN, NN}, epcf (NN, NN, NN, NN)
dimension ecp (NN, NN, NN, NN)

dimension 20 (NN, NN, NN, NN}, 210 (NN, NN, NN, NN)
dimension Zlmin{NN, NN, NN, NN}

dimension Zhln (NN, NN, NN, NN), Zh (NN, NN, NN, NN)
dimension Zz (NN, NN, NN, NN}

dimension Y1AG (NN, NN}, YLAD (NN, NR)

dimension Y1BG({NN, NN}, Y1BD (NN, NN)

dimension Y1AB(NN, NN}, Y1GD (NN, NN)

dimension XAL(NN),XBT (NN), XGM (NN), XDT (NN)
dimension YLAGLln(NN,NN), Y1AD1n (NN, NN}
dimension Y1BGln (NN, NN), Y1BD1n (NN, NN)
dimension Y1ABLln (NN, NN), Y1GDln (NN, NN)
dimension XALln(NN),XBT1ln{NN), XGMln{(NN), XDT1n (NN}

character*2 component
Dimension component {NN}

Data i1trf,testZ/20000,1.0e-4/
Ichem=nod (Iphase, 10)

1f (Nmag.gt.0) then
Imag=Iphase/10

1f (Imag.gt.0) then
11(l) =1
1f (Nmag.gt.l) then
do 1=2, Nma
11{1)=11(i-1)+nspin(x-1)
enddo
endif
endaf

do 1=1,Nel
Zln(1, 3, k, 1} =dlog (20(1, 3, k. 2})}
enddo
enddo
enddo
enddo

dz=2.0
1itr=0

do 100 whalef.not.((dZ.lt.test2).or.{1tr.ge,1trfl}))
1tr=atr+l

Cm o m N
Reduction relations

Y1AG({i, k)~ alfa,gamma nearest neighbour pair cluster probability
Y1AD{i,l)= alfa,delta nearest neighbour pair cluster probability
Y1BG(j, k)= beta,gamma nearest neighbour pair cluster probabilaty
Y1BD(3,1)= beta,delta nearest neighbour pair cluster probability
Y1AB(i, j)= alfa,beta nearest neighbour cair cluster probability

Y1GD(k, 1)- gamma,delta nearest neighbour pair cluster
robability

XAL(1)= alfa point cluster probability

oo onNnNNnNanaanNnng

XBT!3})= beta point cluster probability
XGM(k})= gamma point cluster probability

XDT(l)= delta point cluster preobability

aonnoonNnnaonnanNnnonNonn

do 1=1,Nel
XAL(i)=0.0
XBT{i)~0.0

XDT(i)=0.0
do 3~1,Nel
Y1AG({1,3)=0.0
Y1AD {1, 3)=0.0
Y1BG (1, 1)=0.0
Y1BD(1, 3)=0.0
Y1AB({1, 3)=0.0
Y1GD ({1, 3}=0.0
do k=1,Nel
do 1=1, Nel
2lninfa, ), ke 1)=21n(1, 3.k, 1)
Y1AG(1, 3)=Y1AG (1, 1) +20(1,k, 3,1)
Y1AD (1, 3)=Y1AD (1, )} +20(1,%,1,))
Y1BG (1, ))=Y1BG({1, )} +20¢k,2, 3,1}
Y1BD (1, ))=Y1BD({1, )} +20ik,2,1, 3)
Y1AB (1, 3)=Y1AB(1, )) +20(1, 5, k, 1)
Y1GD (1, ) =Y1GD (1, ) +Z0(k,1,1,))
XAL (1) =XAL{1)+20(2, 3.k, 1}
XBT (1) =XBT{2}+20(1,1, 3.k}
XGM (1) =XGM{1}+20(k, 1,1, 3}
XDT (1)=XDT (1}+20¢3,k, 1,1}
enddo
enddo
Y1AGIn{1, j)=dleg(Y1AG(1, )))
Y1ADIn(1, J)=dlog(Y1AD(1,]))
Y1BGln(1, })=dlog(Y1BG (1, 3})}}
Y1BDln{1, j)=dlog(Y1BD(1,))}
Y1ABln(1i, j}=dlog(Y1AB(1i,))}
Y1GDln(a, J)=~dlog(Y1GD {1, ))}
enddo
XALln(1)=dlog (XAL{1)}
XBTln(1)=dlog (XBT (1))
AGMln(1}=dlog (XGM (1))
XDTin{1)=dlog({XDT (1))
enddo

Engp=0.0

do 1=1],Nel
do =1, Nel
do k=1,HNel
do 1-1,Nel
ZY1ln=Y1AGln(1,k}+Y1ADln{1,1)
+*Y1BGln (3, k) +Y1BDln(3, 1)
+Y1ABln(2, 3)+Y1GDln(Xk, 1}
ZX1n=XALIn (1) *XBT1ln(J) +XGMln (k) +XDTln(l)
Zhln(i, j.k,1}—epcf{i, 1,k,1)+(2Y11n/2.0d+0})
~(5.0d+0%2X1n/8.0d+0)
Zht1i, 3, k,1)=dexp(2hln(i, 3, k., 1))
Emgp=~ Emgp+Zh{i, ), %,1)
enddo
enddo
enddo
enddo

Egp={1.0d+0} /Emgp
GPln=dlog{Egp}
GP=~(2.0d+0}*GPIn*TK

do i-~1,Nel
do 3=1,Nel
do k=1, Nel
do 1=1, Nel
Z0{1, 3.k, 1)=Zh(1, 3, k, 1) *Egp
enddo
enddo
enddo
enddo

Imposing superlattice symmetry:
Ichem= 2 or 3 -> L10(AABB) symmetry
Ichem= 4 or 5 —-> L12(AAAB) symmetry
Ichem= 6 or 7 -> AABC symmetry
Ichem= 8 or 9 -> no symmetry imposed

for all cases above:
Imag <> 0 -> paramagnetic phase

Observation: Use options @ and 9 unless you are having problens
to find second order lines. The symmetry conditions above may
hidden domains of existence for a priorli unknown phases in the
ph. diagram

do 1-1,Nel
do j=1,Nel
do k=1, Nel
do 1=1,Nel
1f ((Ichem.eq.2) .or. (Ichem.eq.3}) then
2z{i,3,k, 1} =(20{i, 3, k, 1} +20(],2,k,1)
+204¢x, 3,1,k)+2043,2,1,k)) /4.048+0
else
1f({Ichem.eq.4).or. {Ichen.eq.5}) then
Zz{1, J,k,1)= (20(1,3,k,1)
+2043,1,k, 11 +20(3,k,1,1)
+20(1,k,7,1)+20(k,1,3,1)
+20¢k,7,1,1))/6.0d+0
alse
1£{{Ichem.eq.6) .or. (Ichem.eq.7}) then
czti, 3.k, 1)=¢20(2, 7, k, 1)
+20(3,1,.k,1))/2.04+0
else
zZzir, 3, k,1}=2001,3,k,1)
enda f
endaf
endaf
enddo
endde
enddo
enddo
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imposing paramagnetism

1f (Imag.gt.0) then
do a=l, Nmag
do b=1, (nspin(a}/2)
do j=1,Nel
do k=1, Nel
do 1=1,Nel
Ztransf=(Zz(il(a)+b-1,73,k, 1)+

. Zz(1l{a)+nspintal-b,j,k,1)}/2.0d+0

Zz(1l(a)+b-1,3,k,.)=2transf
Zz(1l{a)+nspin(a}-b, ), k,1l}=Ztransf

Ztransf=(Zz{j,1)(a)+b-1,k,1} ¢

. 2z ¢3y,11(a)+nspani{a)-b,k,1})/2.04+0
2z{),1lta)+b-1,x, }=Ztransf
Zz(J, 11 (a)+nspinta)-b, Xk, 1}=Ztransf

Ztransf=(Zz(3j,%,12{a) +b-1,1}
. «2z(j,k,1l(a)+nspin(a)-b,1)}/2.04+0
2z{j.k,11(a)+b-i,l)=Ztransf
- zz13],%,11(a)+nspinia)-b,l)=2transf

ztransf=12z(j,k,i.:l(a)+tb-1)+
v 2z (), k,1,11(a)+nspain(a)-b)}/2.0d+0
k,l,11{a)+b-l)=2transf

2z (3,
Zzl(), k., 2.:l(a)+nspin(a)-b)=Ztranst
enddo
enddo
enddo
enddo
enddo
endif
______________________ c
Calculation of the potentials
Egy= 1nternal energy
Fgy- free energy {(Helmholtz potentiall
Etpy= entropy
_______________________________________________________________ c
Egy=0.0
Cptm=0.0
dz=0.0
do 1=1,Nel
do j=1,Nel
do k=1, Nel
do l=1,Nel
Z0{1, 3, k, 1) =22 t1, 3, k. 1)
Zlntz, ), k, J)=alog{20(: < 1))
41Z=dZ+abs(Zintz, 1, k, 1) in(1, 3.k, 1))
Egy=Egy+(2.Cd~0D*epsfii, >, %, 1)*20(1, 3. k, 1)}
Cptm=~ Cptm+(ecpi1, ), Xk, 217201, 3, k,1})
enddo
enddo
enddo
enddo

Cptm= Cptm/ (4.0d+0)
Fgy=GP+Cptm
Etpy=(-Fgy+Egy} *RTK

enddo

Format {/1X,’ Iphase~ ’,12,1X, ‘No convergence in ORD FCC after’,
v 1%, I5,1X,’1terations:’, X, ‘test= *,212.5)

1f (rtr.ge.1trf} then
Write(l0,10) Iphase,itr,test
endif

return
end
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subroutine DISFCC(itr,GP,Eqy, ELpy, Egy)

B R R Y ol

Based on a similar subroutire in preogram bfcc.for
(C. Colinet)
Adapted by Claudio G. Schoen in the actual form

{July 17th 1997)

For FCC disordered phases in the reguiar tetrahedron
cluster approximation

Natural Iteration minimization of the f-ee energy

Parameter {NN=17)

Common/Csys/Nel, Nmag, ncomp, nspin, component
Common/CFCC/epsf,epcf
Common/Cpot/ecp, TK, RTK

Common/Cdis/ZD

integer (kind=2) i,73,%.1
1nteger (kind-2) 1itr
integer {kind=2) Nel,Nmag,ncomp, nspin

Dimension nspin(NN)

real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)
real (kind=2)

epsf, epct, ecp, 2D, GP, Fgy, Z:0Y,Egy
TK,RTK

Zln,Zlnin, dz

Y1,Y1lln, X, Xln

YYln, XXln, Zhlr, Zh, Bmgp, 252, GP1n
Cptm

dimension epsf {NN, NN, NN, NN}, epcf {NN, XN, NN, NN)
dimension ecp (NN, NN, NR, NN)

dimension ZD (NN, NN, NN, NN), Z.1= (NN, NR, XX, \N)
dimension 21lnin (NN, NN, NN, KN}

dimension Y1 (NN,NN}, Y1lln (NN, NN}

dimension X (NN),X1ln (NN)

dimension Zhln (KN, NN, NN, NN), Zh (NN, NN, XN, NN)

character*2 component
Dimension component (NN)

Data 2trf,testZ/20000,1.0e-4/

nonan

do 1=1,Nel
do j)=1,Nel
do k=1, Nel
do 1=1,Nel
2inl1,3,k,1l)=dlog(ZD{1, ), k,1)}
enddo
enddo
enddo
enddo

dz=2.0
1tr=0

do 100 while(.not.{(d2.lt.test2).or.(itr.ge.itrf))}

1tr=i1tr+l

Reduction relations

Y(1,3)= (1sotroplic) pair cluster probability

X(1)= (1sotropic) point cluster probability

_______ - ———— ~-c
do i~1, Nel
X{i)=0.0
do j=1,Nel
Y1l¢i,3)=0.0
do ke=},Nel
do 1=1,Nel
Zlninii, j,k,1)=Zln{1, 3,k, 1)
Y1(a,)}=Y1(i, ) +2D¢a, 3, k, 1)
X{1)=X (1) +2D(1, 3, k, 1)
enddo
enddo
Ylln (1, 3)~dleg(Y1l{1, 1))
enddo
Xln{i}=dlog(X{1))
enddo
__________________________________________ c
One NIM iteration
Emgp=0.0
do 1=1, Nel
do )=1,Nel
do k=1, Nel
do l=1, Nel
YYln=(Ylln(1,k)+Ylln{1,1)+¥Y1l1ln(j, k) +

M Yllntj,1)+Y1ln{1, j)+Y¥1l1ln(k, 1)}
XXln=(Xln{1)+X1ln()) +X1n(k) +Xln(1})
Zhln(1, 3, k, 1) =epcf i, 3, k. 1)

M +(YY1n/2.0d+0)-(5.0d+0*XX1n/8.04+0)
2h{1, ), k,l)=dexp(Zhln(i, 3, k,1}}
Emgp~Emgp+Zh{i, ), k, 1)

enddo
enddo
enddo
enddo
EGP=1.0d+0/Bmgp
GPln=dlog (EGP)
GP=~2.0d+0*GP1ln*TK
Egy= 0.0
Cptnmn= 0.0
dz=0.0
do 1=1,Nel
do 31=1,Nel
do k=1,Nel
do 1l=1,Nel
21niy, ), k,1)=Zhin(1, 3, k, 1) +GPln
2D{1, 3.k, 1)=Zh{1, 3, k. 1) *EGP
dZ-dz+abs (Zln(1, J,k,1}-21inin(1, 3, k, 1))
Egy=Egy+(2.0d+0"epsf (1,3, k,1)*2D (1, 3, k. 1})
Cptm=Cptm+ (ecpiy, J,k, 1) *2D(i,),k,1)/4.0d4+0)
enddo
enddo
enddo
enddo
100 enddo
Fgy=GP+Cptm

Etpy=(-Fgy+Egy) *RTK

10 Format (/1X, *No convergence in DIS FCC after’,
b 1X,15,1X,’1terations:’, /1X, ' teat=~ *,E12.5)

1f {1tr.ge.atrf) then
Write(10,10) atr,d2
endaf

return
end
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